Chiral and achiral crystals, charge-assisted hydrogen-bond patterns and self-organization of selected solid diaminium thiosulfates - Publication - Bridge of Knowledge

Search

Chiral and achiral crystals, charge-assisted hydrogen-bond patterns and self-organization of selected solid diaminium thiosulfates

Abstract

Abstract A series of diaminium thiosulfates, derivatives of diamines: NH2CH2CH(CH3)NH2 (1) and NH2(CH2)nNH2, n = 3-6 (2-5 respectively)and thiosulfuric acid were prepared and their structures determined by crystal X-ray diffraction analysis. Compounds 1, 2 and 4 turned out to be hydrates. The crystal structure of 1,2-proylenediaminium thiosulfate is chiral and exhibits spontaneous resolution. Crystals for both enantiomers (1a and 1b) were obtained and examined. An extended network of strong, charge-assisted hydrogen bonding of the (+)N–H∙∙∙O(-) type (also O–H∙∙∙O and O–H∙∙∙S for hydrates) is most likely the main factor defining crystal packing and variable conformation of the cations. Formation of non-centrosymmetric hydrogen bond motifs – distorted cubans – seems to induce the formation of chiral solid state structure from achiral components in the case of 4. Diaminiumthiosulaftes with an odd number of carbon atoms in alkyl chain (compounds 1, 2, 4) form 3D supramolecular networks, while in the case of diaminium salts with an even number of carbon atoms (3 and 5), 2D layers of hydrogen bond domains are observed. The aminium thiosulfates were also characterized by elemental analysis, NMR, and FTIR spectroscopy. Conformations of α,ω-alkyldiaminiumcations in the solid state are discussed and rationalized by DFT calculations.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 52 times
Publication version
Accepted or Published Version
License
Copyright (International Union of Crystallography)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials no. 73, edition 3, pages 507 - 518,
ISSN: 2052-5206
Language:
English
Publication year:
2017
Bibliographic description:
Brozdowska A., Chojnacki J.: Chiral and achiral crystals, charge-assisted hydrogen-bond patterns and self-organization of selected solid diaminium thiosulfates// Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials. -Vol. 73, iss. 3 (2017), s.507-518
DOI:
Digital Object Identifier (open in new tab) 10.1107/s2052520617004802
Bibliography: test
  1. Agilent Technologies (2013). CrysAlisPro. Santa Clara, USA. Allen, F. H. (2002). Acta Cryst. B58, 380-388.
  2. Armstrong, R. S., Atkinson, I. M., Carter, E., Mahinay, M. S., Skelton, B. W., Turner, P., Wei, G., White, A. H. & Lindoy, L. F. (2002). Proc. Nat. Acad. Sci. USA, 99, 4987-4992. open in new tab
  3. Baouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343-351. open in new tab
  4. Becker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620-621. open in new tab
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. open in new tab
  6. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426. open in new tab
  7. Bu, X., Gier, T. E., Feng, P. & Stucky, G. D. (1998). Chem. Mater. 10, 2546-2551. open in new tab
  8. Budantseva, N. A., Andreev, G. B., Fedoseev, A. M. & Antipin, M. Y. (2003). Russ. J. Coord. Chem. 29, 653-657. open in new tab
  9. Cheng, Z. & Lin, J. (2010). CrystEngComm, 12, 2646-2662. open in new tab
  10. Dą browska, A. & Chojnacki, J. (2014). Z. Kristallogr. 229, 555-561.
  11. Dumitrescu, D., Legrand, Y.-M., Petit, E., van der Lee, A. & Barboiu, M. (2014). Chem. Commun. 50, 14086-14088. open in new tab
  12. Dumitrescu, D., Legrand, Y.-M., Petit, E., van der Lee, A. & Barboiu, M. (2015). Chem. Sci. 6, 2079-2086. open in new tab
  13. Fang, G.-S., Sun, W.-Q., Zhao, W.-X., Lin, R.-L., Tao, Z. & Liu, J.-X. (2016). Org. Biomol. Chem. 14, 674-679. open in new tab
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. open in new tab
  15. Feng, P., Bu, X., Gier, T. E. & Stucky, G. D. (1998). Microporous Mesoporous Mater. 23, 221-229. open in new tab
  16. Frisch, M. J. et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford CT, USA. open in new tab
  17. Gerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504-m505. open in new tab
  18. Guerfel, T. & Jouini, A. (2000). J. Soc. Chim. Tunis. 4, 723-734. open in new tab
  19. Hunter, A. D. (1997). J. Chem. Educ. 74, 905-906. open in new tab
  20. Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998). J. Mater. Chem. 8, 733-741. open in new tab
  21. Knipe, P. C., Thompson, S. & Hamilton, A. D. (2015). Chem. Sci. 6, 1630-1639. open in new tab
  22. Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741. open in new tab
  23. Lemmerer, A. & Billing, D. G. (2012). CrystEngComm, 14, 1954- 1966. open in new tab
  24. Leyten, W., Rettig, S. J. & Trotter, J. (1988). Acta Cryst. C44, 1749- 1751. open in new tab
  25. Lopes Jesus, A. J. & Redinha, J. S. (2011). J. Phys. Chem. A, 115, 14069-14077.
  26. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470. open in new tab
  27. Mitzi, D. B. (2004). J. Mater. Chem. 14, 2355-2365. open in new tab
  28. Mö ller, K. & Bein, T. (2013). Chem. Soc. Rev. 42, 3689-3707. open in new tab
  29. Okuniewski, A., Chojnacki, J., Baranowska, K. & Becker, B. (2013). Acta Cryst. C69, 195-198. open in new tab
  30. Ö nal, M. & Sarıkaya, Y. (2008). Colloids Surf. A Physicochem. Eng. Asp. 312, 56-61. open in new tab
  31. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249- 259. open in new tab
  32. Paul, A. & Kubicki, M. (2009). J. Mol. Struct. 938, 238-244. open in new tab
  33. Paul, A. & Kubicki, M. (2010). J. Mol. Struct. 966, 107-112. open in new tab
  34. Pospieszna-Markiewicz, I., Zielaskiewicz, E., Radecka-Paryzek, W. & Kubicki, M. (2011). Acta Cryst. E67, o371-o372. open in new tab
  35. Seck, G. A., Sene, A., Diop, L. & Maris, T. (2016). Acta Cryst. E72, 273-275. open in new tab
  36. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. open in new tab
  37. Song, H.-H., Yin, P., Zheng, L.-M., Korp, J. D., Jacobson, A. J., Gao, S. & Xin, X.-Q. (2002). J. Chem. Soc. Dalton Trans. pp. 2752-2759. open in new tab
  38. Srinivasan, B. R., Khandolkar, S. S., Jyai, R. N., Ravikumar, K., Sridhar, B. & Natarajan, S. (2013). Spectrochim. Acta A Mol. Biomol. Spectrosc. 102, 235-241. open in new tab
  39. Srinivasan, B. R., Naik, A. R., Dhuri, S. N., Nä ther, C. & Bensch, W. (2011). J. Chem. Sci. 123, 55-61. open in new tab
  40. Stoe & Cie GmbH (2015). X-AREA1.75. Stoe and Cie GmbH, Darmstadt, Germany. open in new tab
  41. Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026- m2028. open in new tab
  42. Trabelsi, S., Essid, M., Roisnel, T., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, m84-m85. open in new tab
  43. Visi, M. Z., Knobler, C. B., Owen, J. J., Khan, M. I. & Schubert, D. M. (2006). Cryst. Growth Des. 6, 538-545. open in new tab
  44. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). Crystal Explorer. University of Western Australia, Australia.
  45. Wong, L. W.-Y., Kan, J. W.-H., Nguyen, T., Sung, H. H.-Y., Li, D., Au- Yeung, A. S.-F., Sharma, R., Lin, Z. & Williams, I. D. (2015). Chem. Commun. 51, 15760-15763. open in new tab
  46. Yang, Y.-X. & Ng, S. W. (2011). Acta Cryst. E67, o1664. open in new tab
  47. Yu, T., Zhang, L., Shen, J., Fu, Y. & Fu, Y. (2014). Dalton Trans. 43, 13115-13121. open in new tab
  48. Zheng, S.-T., Zhang, J. & Yang, G.-Y. (2008). Angew. Chem. Int. Ed. 47, 3909-3913. open in new tab
  49. Zhou, Y.-Y., Yao, S., Yan, J.-H., Chen, L., Wang, T.-T., Wang, C.-J. & Zhang, Z.-M. (2015). Dalton Trans. 44, 20435- 20440. open in new tab
Verified by:
Gdańsk University of Technology

seen 120 times

Recommended for you

Meta Tags