Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation - Publication - Bridge of Knowledge

Search

Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

Abstract

This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

Citations

  • 3 3

    CrossRef

  • 0

    Web of Science

  • 3 4

    Scopus

Cite as

Full text

download paper
downloaded 55 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
ENERGIES no. 11, edition 3, pages 639 - 663,
ISSN: 1996-1073
Language:
English
Publication year:
2018
Bibliographic description:
Łukajtis R., Kucharska K., Hołowacz I., Rybarczyk P., Wychodnik K., Słupek E., Nowak P., Kamiński M.: Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation// ENERGIES. -Vol. 11, iss. 3 (2018), s.639-663
DOI:
Digital Object Identifier (open in new tab) 10.3390/en11030639
Bibliography: test
  1. Cortivo, P.R.D.; Hickert, L.R.; Hector, R.; Ayub, M.A.Z. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crops Prod. 2018, 113, 10-18. [CrossRef] open in new tab
  2. Ruiz, H.A.; Silva, D.P.; Ruzene, D.S.; Lima, L.F.; Vicente, A.A.; Teixeira, J.A. Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain-Effect of process conditions. Fuel 2012, 95, 528-536. [CrossRef] open in new tab
  3. Zhu, J.Q.; Li, X.; Qin, L.; Li, W.C.; Li, H.Z.; Li, B.Z.; Yuan, Y.J. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. Bioresour. Technol. 2016, 218, 380-387. [CrossRef] [PubMed] open in new tab
  4. Białas, W.; Szymanowska, D.; Grajek, W. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour. Technol. 2010, 101, 3126-3131. [CrossRef] [PubMed] open in new tab
  5. Nilsson, A. Control of Fermentation of Lignocellulosic Hydrolysates; Lund University: Lund, Sweden, 2001.
  6. Jung, Y.H.; Kim, I.J.; Kim, J.J.; Oh, K.K.; Han, J.I.; Choi, I.G.; Kim, K.H. Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresour. Technol. 2011, 102, 7307-7312. [CrossRef] [PubMed] open in new tab
  7. Ishola, M.M.; Ylitervo, P.; Taherzadeh, M.J. Co-Utilization of glucose and xylose for enhanced lignocellulosic ethanol production with reverse membrane bioreactors. Membranes 2015, 5, 844-856. [CrossRef] [PubMed] open in new tab
  8. Tavva, S.S.M.D.; Deshpande, A.; Durbha, S.R.; Palakollu, V.A.R.; Goparaju, A.U.; Yechuri, V.R.; Bandaru, V.R.; Muktinutalapati, V.S.R. Bioethanol production through separate hydrolysis and fermentation of Parthenium hysterophorus biomass. Renew. Energy 2016, 86, 1317-1323. [CrossRef] open in new tab
  9. Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851-4861. [CrossRef] [PubMed] open in new tab
  10. Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Res. 2011, 2011, e787532. [CrossRef] [PubMed] open in new tab
  11. Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sustain. Energy Rev. 2015, 44, 728-737. [CrossRef] open in new tab
  12. Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7-14. [CrossRef] [PubMed] open in new tab
  13. Bali, G.; Meng, X.; Deneff, J.I.; Sun, Q.; Ragauskas, A.J. The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. ChemSusChem 2015, 8, 275-279. [CrossRef] [PubMed] open in new tab
  14. Abudi, Z.N.; Hu, Z.; Xiao, B.; Abood, A.R.; Rajaa, N.; Laghari, M. Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: Experimental and modeling study. J. Environ. Manag. 2016, 177, 213-222. [CrossRef] [PubMed] open in new tab
  15. Khare, S.K.; Pandey, A.; Larroche, C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem. Eng. J. 2015, 102, 38-44. [CrossRef] Energies 2018, 11, 639 23 of 24 open in new tab
  16. Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1-11. [CrossRef] open in new tab
  17. Sartori, T.; Tibolla, H.; Prigol, E.; Colla, L.M.; Costa, J.A.V.; Bertolin, T.E. Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using Trichoderma viride. BioMed Res. Int. 2015, 2015, 342716. [CrossRef] [PubMed] open in new tab
  18. Rabemanolontsoa, H.; Saka, S. Various pretreatments of lignocellulosics. Bioresour. Technol. 2016, 199, 83-91. [CrossRef] [PubMed] open in new tab
  19. Selig, M.J.; Tucker, M.P.; Law, C.; Doeppke, C.; Himmel, M.E.; Decker, S.R. High throughput determination of glucan and xylan fractions in lignocelluloses. Biotechnol. Lett. 2011, 33, 961-967. [CrossRef] [PubMed] open in new tab
  20. Trzcinski, A.P.; Stuckey, D.C. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresour. Technol. 2015, 185, 441-444. [CrossRef] [PubMed] open in new tab
  21. Yücel, H.G.; Aksu, Z. Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods. Fuel 2015, 158, 793-799. [CrossRef] open in new tab
  22. Agbogbo, F.K.; Wenger, K.S. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. J. Ind. Microbiol. Biotechnol. 2007, 34, 723-727. [CrossRef] [PubMed] open in new tab
  23. Kupiainen, L.; Ahola, J.; Tanskanen, J. Kinetics of Formic Acid-catalyzed Cellulose Hydrolysis. BioResources 2014, 9, 2645-2658. [CrossRef] open in new tab
  24. Sivagurunathan, P.; Kumar, G.; Mudhoo, A.; Rene, E.R.; Saratale, G.D.; Kobayashi, T.; Xu, K.; Kim, S.H.; Kim, D.H. Fermentative hydrogen production using lignocellulose biomass: An overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew. Sustain. Energy Rev. 2017, 77, 28-42. [CrossRef] open in new tab
  25. Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675-685. [CrossRef] [PubMed] open in new tab
  26. Da Silva, C.; De Menezes Silva Conde, M.; Longhi-Wagner, H.M. Olyreae (Poaceae: Bambusoideae) of Marambaia, Rio de Janeiro, Brazil;Olyreae (Poaceae Bambusoideae) da Marambaia, Rio Janeiro, Bras. Rodriguésia 2012, 63, 357-372. [CrossRef] open in new tab
  27. Lau, M.W.; Gunawan, C.; Balan, V.; Dale, B.E. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol. Biofuels 2010, 3, 11. [CrossRef] [PubMed] open in new tab
  28. Garcia Sanchez, R.; Karhumaa, K.; Fonseca, C.; Sànchez Nogué, V.; Almeida, J.R.; Larsson, C.U.; Bengtsson, O.; Bettiga, M.; Hahn-Hägerdal, B.; Gorwa-Grauslund, M.F. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 2010, 3, 13. [CrossRef] [PubMed] open in new tab
  29. Wikandari, R.; Millati, R.; Taherzadeh, M.J. Pretreatment of Lignocelluloses with Solvent N-Methylmorpholine N-oxide. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; open in new tab
  30. García, M.; Gonzaloa, A.; Sánchez, L.; Arauzo, J.; Simoes, C. Methanolysis and ethanolysis of animal fats: A comparative study of the influence of alcohols. Chem. Ind. Chem. Eng. Q. 2011, 17, 91-97. [CrossRef] open in new tab
  31. Silva, J.P.A.; Mussatto, S.I.; Roberto, I.C. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl. Biochem. Biotechnol. 2010, 162, 1306-1315. [CrossRef] [PubMed] open in new tab
  32. Alrumman, S.A. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz. J. Microbiol. 2016, 47, 110-119. [CrossRef] [PubMed] open in new tab
  33. Jiang, Y.; Li, X.; Wang, X.; Meng, L.; Wang, H.; Peng, G.; Wang, X.; Mu, X. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation. Green Chem. 2012, 14, 2162-2167. [CrossRef] open in new tab
  34. Hasegawa, I.; Khoo, T.H.; Mae, K. Direct saccharification of lignocellulosic biomass by hydrolysis with formic acid solution. Green Process. Synth. 2013, 2, 143-149. [CrossRef] open in new tab
  35. Scordia, D.; Cosentino, S.L.; Jeffries, T.W. Enzymatic hydrolysis, simultaneous saccharification and ethanol fermentation of oxalic acid pretreated giant reed (Arundo donax L.). Ind. Crops Prod. 2013, 49, 392-399. [CrossRef] open in new tab
  36. E Silva, C.F.L.; Schirmer, M.A.; Maeda, R.N.; Barcelos, C.A.; Pereira, N. Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron. J. Biotechnol. 2015, 18, 10-15. [CrossRef] Energies 2018, 11, 639 24 of 24 open in new tab
  37. Cotana, F.; Barbanera, M.; Foschini, D.; Lascaro, E.; Buratti, C. Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Procedia 2015, 82, 389-394. [CrossRef] open in new tab
  38. Kuhad, R.C.; Gupta, R.; Khasa, Y.P.; Singh, A. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour. Technol. 2010, 101, 8348-8354. [CrossRef] [PubMed] open in new tab
  39. Chaudhary, G.; Singh, L.K.; Ghosh, S. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresour. Technol. 2012, 124, 111-118. [CrossRef] [PubMed] open in new tab
  40. Taherzadeh, M.J.; Karimi, K. Fermentation Inhibitors in Ethanol Processes and Different Strategies to Reduce Their Effects. In Biofuels; Elsevier: São Paulo, Brazil, 2011; pp. 287-311, ISBN 9780123850997. open in new tab
  41. Kim, S.K.; Park, D.H.; Song, S.H.; Wee, Y.J.; Jeong, G.T. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 2013, 36, 659-666. [CrossRef] [PubMed] open in new tab
  42. Kundu, C.; Trinh, L.T.P.; Lee, H.J.; Lee, J.W. Bioethanol production from oxalic acid-pretreated biomass and hemicellulose-rich hydrolysates via a combined detoxification process. Fuel 2015, 161, 129-136. [CrossRef] open in new tab
  43. Keshav, P.K.; Shaik, N.; Koti, S.; Linga, V.R. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crops Prod. 2016, 91, 323-331. [CrossRef] open in new tab
  44. Lee, H.J.; Lim, W.S.; Lee, J.W. Improvement of ethanol fermentation from lignocellulosic hydrolysates by the removal of inhibitors. J. Ind. Eng. Chem. 2013, 19, 2010-2015. [CrossRef] open in new tab
  45. Sindhu, R.; Kuttiraja, M.; Prabisha, T.P.; Binod, P.; Sukumaran, R.K.; Pandey, A. Bioresource Technology Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresour. Technol. 2016, 215, 110-116. [CrossRef] [PubMed] open in new tab
  46. Zhu, J.; Yong, Q.; Xu, Y.; Yu, S. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresour. Technol. 2011, 102, 1663-1668. [CrossRef] [PubMed] open in new tab
  47. Narra, M.; James, J.P.; Balasubramanian, V. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production. Bioresour. Technol. 2015, 179, 331-338. [CrossRef] [PubMed] open in new tab
  48. Moreno, A.; Ibarra, D.; Mialon, A.; Ballesteros, M. A Bacterial Laccase for Enhancing Saccharification and Ethanol Fermentation of Steam-Pretreated Biomass. Fermentation 2016, 2, 11. [CrossRef] open in new tab
  49. Kossatz, H.L.; Rose, S.H.; Viljoen-Bloom, M.; van Zyl, W.H. Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem. 2017, 53, 10-16. [CrossRef] open in new tab
  50. McMillan, J.D. Xylose Fermentation to Ethanol: A Review. Available online: https://www.nrel.gov/docs/ legosti/old/4944.pdf (accessed on 4 Mar 2018). open in new tab
  51. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP);
  52. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report NREL/TP-510-42623; NREL: Golden, CO, USA, 2008; pp. 1-14. open in new tab
  53. Sluiter, A.; Hames, B.; Hyman, D.; Payne, C.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples; Technical Report NREL/TP-510-42621; open in new tab
  54. NREL: Golden, CO, USA, 2008; p. 9. open in new tab
  55. Hames, B.; Scarlata, C.; Nrel, A.S. Determination of Protein Content in Biomass; Technical Report NREL/TP-510-42625; NREL: Golden, CO, USA, 2008. open in new tab
  56. Resch, M.G.; Baker, J.O.; Nrel, S.R.D. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Low Solids Enzymatic Saccharification of Lignocellulosic Biomass Laboratory Analytical Procedure (LAP); open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 235 times

Recommended for you

Meta Tags