Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design - Publication - Bridge of Knowledge

Search

Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design

Abstract

Parameter optimization, also referred to as design closure, is imperative in the development of modern antennas. Theoretical considerations along with rough dimension adjustment through supervised parameter sweeping can only yield initial designs that need to be further tuned to boost the antenna performance. The major challenges include handling of multi-dimensional parameter spaces while accounting for several objectives and constraints. Due to complexity of modern antenna topologies, parameter interactions are often involved, leading to multiple local optima as well as difficulties in identifying decent initial designs that can be improved using local procedures. In such cases, global search is required, which is an expensive endeavor, especially if full-wave electromagnetic (EM) analysis is employed for antenna evaluation. This paper proposes a novel technique accommodating the search space exploration using local kriging surrogates and local improvement by means of trust-region gradient search. Computational efficiency of the process is achieved by constructing the metamodels over appropriately defined affine subspaces and incorporation of coarse-mesh EM simulations at the exploratory stages of the optimization process. The resulting framework enables nearly global search capabilities at the costs comparable to conventional gradient-based local optimization. This is demonstrated using two antenna examples and comparative studies involving multiple-start local tuning.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cite as

Full text

download paper
downloaded 28 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Electronics no. 9, pages 1 - 14,
ISSN: 2079-9292
Language:
English
Publication year:
2020
Bibliographic description:
Tomasson J., Pietrenko-Dąbrowska A., Kozieł S.: Expedited Globalized Antenna Optimization by Principal Components and Variable-Fidelity EM Simulations: Application to Microstrip Antenna Design// Electronics -Vol. 9,iss. 4 (2020), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/electronics9040673
Bibliography: test
  1. Su, S.; Lee, C.; Hsiao, Y. Compact two-inverted-F-antenna system with highly integrated π-shaped decoupling structure. IEEE Trans. Ant. Propag. 2019, 67, 6182-6186. [CrossRef] open in new tab
  2. Yazeen, P.S.M.; Vinisha, C.V.; Vandana, S.; Suprava, M.; Nair, R.U. Electromagnetic Performance Analysis of Graded Dielectric Inhomogeneous Streamlined Airborne Radome. IEEE Trans. Antennas Propag. 2017, 65, 1. [CrossRef] open in new tab
  3. Ta, S.X.; Choo, H.; Park, I. Broadband Printed-Dipole Antenna and Its Arrays for 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2183-2186. [CrossRef] open in new tab
  4. Pietrenko-Dabrowska, A.; Koziel, S. Computationally-efficient design optimisation of antennas by accelerated gradient search with sensitivity and design change monitoring. IET Microw. Antennas Propag. 2020, 14, 165-170. [CrossRef] open in new tab
  5. Gregory, M.D.; Bayraktar, Z.; Werner, D.H. Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy. IEEE Trans. Antennas Propag. 2011, 59, 1275-1285. [CrossRef] open in new tab
  6. Bhattacharya, R.; Garg, R.; Bhattacharyya, T.K. Design of a PIFA-Driven Compact Yagi-Type Pattern Diversity Antenna for Handheld Devices. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1. [CrossRef] open in new tab
  7. Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electronics 2019, 8, 158. [CrossRef] open in new tab
  8. Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A. Bandwidth Enhancement and Frequency Scanning Array Antenna Using Novel UWB Filter Integration Technique for OFDM UWB Radar Applications in Wireless Vital Signs Monitoring. Sensors 2018, 18, 3155. [CrossRef] open in new tab
  9. Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A. Resonator Based Switching Technique between Ultra Wide Band (UWB) and Single/Dual Continuously Tunable-Notch Behaviors in UWB Radar for Wireless Vital Signs Monitoring. Sensors 2018, 18, 3330. [CrossRef] open in new tab
  10. Palacios, J.; De Donno, D.; Widmer, J. Lightweight and Effective Sector Beam Pattern Synthesis With Uniform Linear Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 605-608. [CrossRef] open in new tab
  11. Ehrenborg, C.; Gustafsson, M. Fundamental Bounds on MIMO Antennas. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 21-24. [CrossRef] open in new tab
  12. Akyol, S.; Alatas, B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2016, 47, 417-462. [CrossRef] open in new tab
  13. Jian, R.; Chen, Y.; Chen, T. Multi-Parameters Unified-Optimization for Millimeter Wave Microstrip Antenna Based on ICACO. IEEE Access 2019, 7, 53012-53017. [CrossRef] open in new tab
  14. Smith, J.; Baginski, M.E. Thin-Wire Antenna Design Using a Novel Branching Scheme and Genetic Algorithm Optimization. IEEE Trans. Antennas Propag. 2019, 67, 2934-2941. [CrossRef] open in new tab
  15. Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P. Multi-objective Particle Swarm Optimization to Design a Time Delay Equalizer Metasurface for an Electromagnetic Band Gap Resonator Antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1. [CrossRef] open in new tab
  16. Goudos, S.K. Antenna Design Using Binary Differential Evolution: Application to discrete-valued design problems. IEEE Antennas Propag. Mag. 2017, 59, 74-93. [CrossRef] open in new tab
  17. Baumgartner, P.; Bauernfeind, T.; Biro, O.; Hackl, A.; Magele, C.; Renhart, W.; Torchio, R. Multi-Objective Optimization of Yagi-Uda Antenna Applying Enhanced Firefly Algorithm With Adaptive Cost Function. IEEE Trans. Magn. 2018, 54, 1-4. [CrossRef] open in new tab
  18. Subhashini, K.R. Antenna array synthesis using a newly evolved optimization approach: Strawberry algorithm. J. Electr. Eng. 2019, 70, 317-322. [CrossRef] open in new tab
  19. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 31, 1995-2014. [CrossRef] open in new tab
  20. Salgotra, R.; Singh, U. A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput. Appl. 2016, 30, 2269-2282. [CrossRef] open in new tab
  21. Alzahed, A.; Mikki, S.; Antar, Y.M. Nonlinear Mutual Coupling Compensation Operator Design Using a Novel Electromagnetic Machine Learning Paradigm. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 861-865. [CrossRef] open in new tab
  22. Tak, J.; Kantemur, A.; Sharma, Y.; Xin, H. A 3-D-Printed W-Band Slotted Waveguide Array Antenna Optimized Using Machine Learning. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2008-2012. [CrossRef] open in new tab
  23. Bin Liu, J.; Shen, Z.X.; Lu, Y.L. Optimal Antenna Design With QPSO-QN Optimization Strategy. IEEE Trans. Magn. 2014, 50, 645-648. [CrossRef] open in new tab
  24. Pantoja, M.F.; Meincke, P.; Bretones, A.C.R. A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas. IEEE Trans. Antennas Propag. 2007, 55, 777-781. [CrossRef] open in new tab
  25. Zaharis, Z.; Lazaridis, P.; Cosmas, J.; Skeberis, C.; Xenos, T.D. Synthesis of a Near-Optimal High-Gain Antenna Array With Main Lobe Tilting and Null Filling Using Taguchi Initialized Invasive Weed Optimization. IEEE Trans. Broadcast. 2014, 60, 120-127. [CrossRef] open in new tab
  26. Koziel, S.; Bekasiewicz, A. Multi-Objective Design of Antennas Using Surrogate Models; World Scientific Pub Co Pte Lt: Singapore, 2016. open in new tab
  27. Koziel, S.; Leifsson, L. (Eds.) Surrogate-based modeling and optimization. In Applications in Engineering; Springer: New York, NY, USA, 2013. open in new tab
  28. Hao, Z.-C.; He, M.; Hong, W. Design of a Millimeter-Wave High Angle Selectivity Shaped-Beam Conformal Array Antenna Using Hybrid Genetic/Space Mapping Method. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1208-1212. [CrossRef] open in new tab
  29. Koziel, S.; Unnsteinsson, S.D. Expedited Design Closure of Antennas by Means of Trust-Region-Based Adaptive Response Scaling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1099-1103. [CrossRef] open in new tab
  30. Koziel, S.; Bekasiewicz, A. Expedited simulation-driven design optimization of UWB antennas by means of response features. Int. J. RF Microw. Comput. Eng. 2017, 27, e21102. [CrossRef] open in new tab
  31. Koziel, S.; Pietrenko-Dabrowska, A. Performance-Driven Surrogate Modeling of High-Frequency Structures; open in new tab
  32. Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020. open in new tab
  33. Richards, L.E.; Jolliffe, I.T. Principal Component Analysis. J. Mark. Res. 1988, 25, 410. [CrossRef] open in new tab
  34. Kleijnen, J.P.C. Kriging metamodeling in simulation: A review. Eur. J. Oper. Res. 2009, 192, 707-716. [CrossRef] open in new tab
  35. Ai, M.; Kong, X.; Li, K. A general theory for orthogonal array based Latin hyper-cube sampling. Stat. Sin. 2016, 26, 761-777. open in new tab
  36. Forrester, A.I.J.; Keane, A. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50-79. [CrossRef] open in new tab
  37. Couckuyt, I. Forward and inverse surrogate modeling of computationally expen-sive problems. PhD Thesis, Ghent University, Gent, Belgium, 2013.
  38. Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust region methods; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2000. open in new tab
  39. Broyden, C.G. A class of methods for solving nonlinear simultaneous equations. Math. Comp. 1965, 19, 577-593. [CrossRef] open in new tab
  40. Alsath, M.G.N.; Kanagasabai, M.; Alsath, M.G.N. Compact UWB Monopole Antenna for Automotive Communications. IEEE Trans. Antennas Propag. 2015, 63, 1. [CrossRef] open in new tab
  41. Zhu, J.; Bandler, J.W.; Nikolova, N.K.; Koziel, S. Antenna Optimization through Space Mapping. IEEE Trans. Antennas Propag. 2007, 55, 651-658. [CrossRef] open in new tab
  42. Chen, Y.-C.; Chen, S.-Y.; Hsu, P. Dual-Band Slot Dipole Antenna Fed by a Coplanar Waveguide. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9-14 July 2006; pp. 3589-3592. [CrossRef] open in new tab
  43. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 96 times

Recommended for you

Meta Tags