Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies - Publication - Bridge of Knowledge

Search

Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies

Abstract

The paper presents a synthesis of novel hydrophobic deep eutectic solvents (DESs) composed of natural components, which were used for removal of furfural (FF) and 5-hydroxymethylfurfural (HMF) from lignocellulosic hydrolysates. The main physicochemical properties of DESs were determined, followed by explanation of the DES formation mechanism, using 1H NMR, 13C NMR and FT-IR analysis and density functional theory (DFT). The most important extraction parameters were optimized. Reusability, regeneration of DES, multistage extraction, influence of FF and HMF concentration, as well as possibility of sugars loss were also investigated. The experimental studies revealed high extraction efficiency resulting in 79.2% and 87.9% removal of FF and HMF respectively from model hydrolysates and in the range of 74.2–76.1% and 87.8–82.3% from real samples in one-step extraction. The yield of bio‑hydrogen production via dark fermentation after the DES extraction was comparable to the results obtained using enzymatic hydrolysis. The theoretical studies on the extraction mechanism revealed that hydrogen bonds and van der Waals interactions were the main driving force for detoxification of lignocellulosic biomass.

Citations

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Cite as

Full text

download paper
downloaded 69 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 303,
ISSN: 0167-7322
Language:
English
Publication year:
2020
Bibliographic description:
Makoś P., Słupek E., Gębicki J.: Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies// JOURNAL OF MOLECULAR LIQUIDS -Vol. 303, (2020), s.113101-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2020.113101
Bibliography: test
  1. M. Raud, T. Kikas, O. Sippula, N.J. Shurpali, Potentials and challenges in lignocellu- losic biofuel production technology, Renew. Sust. Energ. Rev. 111 (2019) 44-56, https://doi.org/10.1016/j.rser.2019.05.020. open in new tab
  2. E. Słupek, P. Makoś, K. Kucharska, J. Gębicki, Mesophilic and thermophilic dark fer- mentation course analysis using sensor matrices and chromatographic techniques, Chem. Pap. (2019) https://doi.org/10.1007/s11696-019-01010-6in press. open in new tab
  3. K. Kucharska, I. Hołowacz, D. Konopacka-Łyskawa, P. Rybarczyk, M. Kamiński, Key issues in modeling and optimization of lignocellulosic biomass fermentative conver- sion to gaseous biofuels, Renew. Energy 129 (2018) 384-408, https://doi.org/10. 1016/j.renene.2018.06.018. open in new tab
  4. P. Zhu, O.Y. Abdelaziz, C.P. Hulteberg, A. Riisager, New synthetic approaches to biofuels from lignocellulosic biomass, Curr. Opin. Green Sustain. Chem. 21 (2020) 16-21, https://doi.org/10.1016/j.cogsc.2019.08.005. open in new tab
  5. B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current perspective on pretreatment technologies using lignocellulosic biomass : an emerging biore fi nery concept, 199 (2020) 106244-106268, https://doi.org/10.1016/j.fuproc.2019. 106244. open in new tab
  6. G. Kumar, P. Sivagurunathan, B. Sen, A. Mudhoo, G. Davila-Vazquez, G. Wang, S.H. Kim, Research and development perspectives of lignocellulose-based biohydrogen production, Int. Biodeterior. Biodegrad. 119 (2017) 225-238, https://doi.org/10. 1016/j.ibiod.2016.10.030. open in new tab
  7. C. Phuttaro, C. Sawatdeenarunat, K.C. Surendra, P. Boonsawang, S. Chaiprapat, S.K. Khanal, Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield, Bioresour. Technol. 284 (2019) 128-138, https://doi.org/10.1016/j.biortech. 2019.03.114. open in new tab
  8. D.L. Grzenia, D.J. Schell, S. Ranil Wickramsinghe, Detoxification of biomass hydroly- sates by reactive membrane extraction, J. Memb. Sci. 348 (2010) 6-12, https://doi. org/10.1016/j.memsci.2009.10.035. open in new tab
  9. D.L. Grzenia, D.J. Schell, S. Ranil Wickramasinghe, Membrane extraction for detoxifi- cation of biomass hydrolysates, Bioresour. Technol. 111 (2012) 248-254, https:// doi.org/10.1016/j.biortech.2012.01.169. open in new tab
  10. L. Pan, M. He, B. Wu, Y. Wang, G. Hu, K. Ma, Simultaneous concentration and detox- ification of lignocellulosic hydrolysates by novel membrane filtration system for bioethanol production, J. Clean. Prod. 227 (2019) 1185-1194, https://doi.org/10. 1016/j.jclepro.2019.04.239. open in new tab
  11. T.R.K.C. Doddapaneni, R. Jain, R. Praveenkumar, J. Rintala, H. Romar, J. Konttinen, Ad- sorption of furfural from torrefaction condensate using torrefied biomass, Chem. Eng. J. 334 (2018) 558-568, https://doi.org/10.1016/j.cej.2017.10.053. open in new tab
  12. G.B.M. Carvalho, S.I. Mussatto, E.J. Cândido, J.B. Almeida e Silva, Comparison of differ- ent procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes, J. Chem. Technol. Biotechnol. 81 (2006) 152-157, https://doi.org/10.1002/jctb.1372. open in new tab
  13. D. Ludwig, M. Amann, T. Hirth, S. Rupp, S. Zibek, Development and optimization of single and combined detoxification processes to improve the fermentability of lignocellulose hydrolyzates, Bioresour. Technol. 133 (2013) 455-461, https://doi. org/10.1016/j.biortech.2013.01.053. open in new tab
  14. L.R. Roque, G.P. Morgado, V.M. Nascimento, J.L. Ienczak, S.C. Rabelo, Liquid-liquid ex- traction: a promising alternative for inhibitors removing of pentoses fermentation, Fuel 242 (2019) 775-787, https://doi.org/10.1016/j.fuel.2018.12.130. open in new tab
  15. C.H.J.T. Dietz, F. Gallucci, M. Van Sint Annaland, C. Held, M.C. Kroon, 110th anniver- sary: distribution coefficients of furfural and 5-hydroxymethylfurfural in hydropho- bic deep eutectic solvent + water systems: experiments and perturbed-chain statistical associating fluid theory predictions, Ind. Eng. Chem. Res. 58 (2019) 4240-4247, https://doi.org/10.1021/acs.iecr.8b06234. open in new tab
  16. P. Cui, H. Liu, K. Xin, H. Yan, Q. Xia, Y. Huang, Q. Li, Liquid-liquid equilibria for the ter- nary system of water + furfural + solvents at 303.15 and 323.15 K under atmo- spheric pressure, J. Chem. Thermodyn. 127 (2018) 134-144, https://doi.org/10. 1016/j.jct.2018.01.027. open in new tab
  17. P. Makoś, G. Boczkaj, Deep eutectic solvents based highly efficient extractive desul- furization of fuels -eco-friendly approach, J. Mol. Liq. (2019) 111916-111927, https://doi.org/10.1016/j.molliq.2019.111916. open in new tab
  18. D. Smink, S.R.A. Kersten, B. Schuur, Recovery of lignin from deep eutectic solvents by liquid-liquid extraction, Sep. Purif. Technol. 235 (2019) 116127-116133, https:// doi.org/10.1016/j.seppur.2019.116127. open in new tab
  19. P. Makoś, E. Słupek, J. Gębicki, Hydrophobic deep eutectic solvents in microextraction techniques-a review, Microchem. J. 152 (2020) 104384-104400, https://doi.org/10.1016/j.microc.2019.104384. open in new tab
  20. P. Makoś, A. Przyjazny, G. Boczkaj, Hydrophobic deep eutectic solvents as "green" extraction media for polycyclic aromatic hydrocarbons in aqueous samples, J. Chromatogr. A 1570 (2018) 28-37, https://doi.org/10.1016/J.CHROMA.2018.07.070. open in new tab
  21. P. Makoś, A. Fernandes, A. Przyjazny, G. Boczkaj, Sample preparation procedure using extraction and derivatization of carboxylic acids from aqueous samples by means of deep eutectic solvents for gas chromatographic-mass spectrometric analysis, J. Chromatogr. A 1555 (2018) 10-19, https://doi.org/10.1016/J.CHROMA.2018.04.054. open in new tab
  22. C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments, Fluid Phase Equilib. 448 (2017) 135-142, https://doi.org/10.1016/J.FLUID.2017.04.002. open in new tab
  23. L.F. Zubeir, D.J.G.P. Van Osch, M.A.A. Rocha, F. Banat, M.C. Kroon, Carbon dioxide sol- ubilities in decanoic acid-based hydrophobic deep eutectic solvents, J. Chem. Eng. Data 63 (2018) 913-919, https://doi.org/10.1021/acs.jced.7b00534. open in new tab
  24. E. Słupek, P. Makoś, J. Gębicki, Deodorization of model biogas by means of novel non-ionic deep eutectic solvent, Arch. Environ. Prot. 46 (2020) 41-46, https://doi. org/10.24425/aep.2020.132524. open in new tab
  25. E. Słupek, P. Makoś, Absorptive desulfurization of model biogas stream using choline chloride-based deep eutectic solvents, Sustainability 12 (2020) 1619-1635, https:// doi.org/10.3390/su12041619. open in new tab
  26. C.L. Boldrini, N. Manfredi, F.M. Perna, V. Capriati, A. Abbotto, Designing eco- sustainable dye-sensitized solar cells by the use of a menthol-based hydrophobic eutectic solvent as an effective electrolyte medium, Chem. -A Eur. J. 24 (2018) 17656-17659, https://doi.org/10.1002/chem.201803668. open in new tab
  27. C.H.J.T. Dietz, M.C. Kroon, M. Van Sint Annaland, F. Gallucci, Thermophysical proper- ties and solubility of different sugar-derived molecules in deep eutectic solvents, J. Chem. Eng. Data 62 (2017) 3633-3641, https://doi.org/10.1021/acs.jced.7b00184. open in new tab
  28. R. Łukajtis, P. Rybarczyk, K. Kucharska, D. Konopacka-Łyskawa, E. Słupek, K. Wychodnik, M. Kamiński, Optimization of saccharification conditions of lignocellu- losic biomass under alkaline pre-treatment and enzymatic hydrolysis, Energies (2018) 886-913, https://doi.org/10.3390/en11040886. open in new tab
  29. K. Kucharska, R. Łukajtis, E. Słupek, H. Cieśliński, P. Rybarczyk, M. Kamiński, Hydro- gen production from energy poplar preceded by MEA pre-treatment and enzymatic hydrolysis, Molecules 23 (2018) 3029-3050, https://doi.org/10.3390/ molecules23113029. open in new tab
  30. P.R. Naidu, V.R. Krishnan, Viscosities of binary liquid mixtures, Proc. Indian Acad. Sci. -Sect. A. 64 (1966) 229-236, https://doi.org/10.1007/BF03049393. open in new tab
  31. N. Sudhir, P. Yadav, B.R. Nautiyal, R. Singh, H. Rastogi, H. Chauhan, Extractive desul- furization of fuel with methyltriphenyl phosphonium bromide-tetraethylene glycol-based eutectic solvents, Sep. Sci. Technol. (2019) 554-563, https://doi.org/ 10.1080/01496395.2019.1569061. open in new tab
  32. E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A.J. Cohen, W. Yang, Re- vealing noncovalent interactions, J. Am. Chem. Soc. 132 (2010) 6498-6506, https:// doi.org/10.1021/ja100936w. open in new tab
  33. M. Madani-Tonekaboni, M. Kamankesh, A. Mohammadi, Determination of furfural and hydroxymethyl furfural from baby formula using dispersive liquid-liquid microextraction coupled with high performance liquid chromatography and method optimization by response surface methodology, J. Food Compos. Anal. 40 (2015) 1-7, https://doi.org/10.1016/j.jfca.2014.12.004. open in new tab
  34. C. Florindo, F. Lima, L.C. Branco, I.M. Marrucho, Hydrophobic deep eutectic solvents: a circular approach to purify water contaminated with ciprofloxacin, ACS Sustain. Chem. Eng. 7 (2019) 14739-14746, https://doi.org/10.1021/acssuschemeng. 9b02658. open in new tab
  35. K.H. Almashjary, M. Khalid, S. Dharaskar, P. Jagadish, R. Walvekar, T.C.S.M. Gupta, Optimisation of extractive desulfurization using choline chloride-based deep eutec- tic solvents, Fuel 234 (2018) 1388-1400, https://doi.org/10.1016/j.fuel.2018.08.005. open in new tab
  36. I. Rykowska, J. Ziemblińska, I. Nowak, Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review, J. Mol. Liq. 259 (2018) 319-339, https://doi.org/10.1016/J.MOLLIQ.2018.03.043. open in new tab
  37. B.G. Fonseca, R.D.O. Moutta, F.D.O. Ferraz, E.R. Vieira, A.S. Nogueira, B.F. Baratella, L.C. Rodrigues, H.R. Zhang, S.S. Da Silva, Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast, J. Ind. Microbiol. Biotechnol. 38 (2011) 199-207, https://doi.org/10.1007/ s10295-010-0845-z. open in new tab
Verified by:
Gdańsk University of Technology

seen 179 times

Recommended for you

Meta Tags