Fast GC as a useful tool for authenticity assessment of kiwifruit - Publication - Bridge of Knowledge


Fast GC as a useful tool for authenticity assessment of kiwifruit


Kiwifruit is one of the healthiest fruits due to its high content of biologically active substances and nutrients. The most popular species of Actinidia (kiwifruit) are the Actinidia deliciosa fruits called kiwi and Actinidia chinensis commonly called golden kiwi, while the lesser known species is Actinidia arguta known as mini kiwi. Bioactivities and nutrients of Actinidia are influenced by species and cultivars. It is very important to find a way to distinguish kiwifruit samples from botanical and geographical origin. For this purpose, the possibility of application of electronic nose based on ultrafast gas chromatography for differentiation three types of kiwifruit was investigated. A set of 18 samples of kiwifruits were analyzed by fast GC e-nose. This device contains two parallel chromatography columns with different polarity connected with two flame ionization detectors (μ- FIDs). Four data analysis methods were used: discriminant function analysis (DFA), principal component analysis (PCA), soft independent modeling of class analogies (SIMCA), and statistical quality control (SQC). Application of e-nose based on fast GC system allows to effective and rapid compare of aroma profiles of three types of kiwifruits. PCA, DFA and SIMCA data analysis method were for visualization the discrimination between groups of kiwifruit species. The SQC method allowed to assess the quality of the samples. All of used chemometric methods allows for full discrimination of all groups of samples. In summary, the use of ultra-fast GC with four statistical methods can be used to discrimination of kiwifruit samples due to their botanical and geographical origins.

Cite as

Full text

download paper
downloaded 39 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY-NC open in new tab



artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
World Scientific News no. 75, pages 6 - 17,
Publication year:
Bibliographic description:
Michalczuk P., Myszka J., Lubinska M., Różańska A., Namieśnik J.: Fast GC as a useful tool for authenticity assessment of kiwifruit// World Scientific News. -Vol. 75., (2017), s.6-17
Bibliography: test
  1. I. Nishiyama, Adv. Food Nutr. Res. 52, 293-324 (2007). open in new tab
  2. H. Huang, Y. Wang, Z. Zhang, Z. Jiang, and S. Wang, HortScience, 39, 1165-1172 (2004). open in new tab
  3. T. Wang and A.P. Gleave, Applications of Biotechnology in Kiwifruit (Actinidia), in: Innov. Biotechnol., InTech, (2012), pp. 3-30. open in new tab
  4. M. Montefiori, T.K. McGhie, G. Costa, and A.R. Ferguson, J. Agric. Food Chem. 53, 9526-9530 (2005). open in new tab
  5. N. York and B. Garden, Econ. Bot. 21, 81-92 (2013).
  6. S. Sivakumaran, L. Huffman, S. Sivakumaran, and L. Drummond, Food Chem. (2016). open in new tab
  7. C. V. Garcia, S.Y. Quek, R.J. Stevenson, and R.A. Winz, J. Agric. Food Chem. 59, 8358-8365 (2011). open in new tab
  8. A. J. Matich, H. Young, J. M. Allen, M. Y. Wang, S. Fielder, M.A. McNeilage, and E.A. MacRae, Phytochemistry, 63, 285-301 (2003). open in new tab
  9. S. J. Henare, Chapter 15 -The Nutritional Composition of Kiwifruit (Actinidia spp.), in: Nutr. Compos. Fruit Cultiv., (2016), pp. 337-370. open in new tab
  10. L. Drummond, Chapter 3 -The Composition and Nutritional Value of Kiwifruit, in: Adv. Food Nutr. Res., (2013), pp. 33-57. open in new tab
  11. A. R. Ferguson and E.A. MacRae, Acta Hortic. 297, 481-488 (1992). open in new tab
  12. G. Du, M. Li, F. Ma, and D. Liang, Food Chem. 113, 557-562 (2009). open in new tab
  13. Y.-S. Park, H. Leontowicz, M. Leontowicz, J. Namiesnik, M. Suhaj, M. Cvikrová, O. Martincová, M. Weisz, and S. Gorinstein, J. Food Compos. Anal., 24, 963-970 (2011). open in new tab
  14. P. Latocha, T. Krupa, R. Wołosiak, E. Worobiej, and J. Wilczak, Int. J. Food Sci. Nutr. 61, 381-394 (2010). open in new tab
  15. P. Wiśniewska, T. Dymerski, W. Wardencki, and J. Namieśnik, J. Sci. Food Agric. 95, 2159-2166 (2015). open in new tab
  16. T. Dymerski, T. Chmiel, A. Mostafa, M. Sliwinska, P. Wisniewska, W. Wardencki, J. Namiesnik, and T. Gorecki, Curr. Org. Chem., 17, 853-870 (2013). open in new tab
  17. W. Wardencki , P. Biernacka, T. Chmiel, T. Dymerski, Proc. ECOpole, 3, 273-279 (2009).
  18. T. Dymerski, J. Gębicki, W. Wardencki, and J. Namieśnik, Sensors, 14, 10709-10724 (2014). open in new tab
  19. C. Di Natale, A. Macagnano, F. Davide, A. D'Amico, R. Paolesse, T. Boschi, M. Faccio, and G. Ferri, Sensors Actuators B Chem. 44, 521-526 (1997). open in new tab
  20. J. Poulsen and A. French, J. Forensic Sci. 56, 297-301 (1996). open in new tab
  21. K. Vanden Branden and M. Hubert, Chemom. Intell. Lab. Syst. 79, 10-21 (2005). open in new tab
  22. P. S. D. Cozzolino, W. U. Cynkar, N. Shah, Food Res. Int. 44, 1888-1896 (2011). open in new tab
  23. N. D. O. Galtier, O. Abbas, Y. Le Dréau, C. Rebufa, J. Kister, J. Artaud, Vib. Spectrosc. 55, 132-140 (2011). open in new tab
  24. M. liwinska, P. Wisniewska, T Dymerski, J. Namieśnik, J. Agric. Food Chem. 62, 1432-1448 (2014). open in new tab
  25. G. Kateman and L. Buydens, Control Charts, in: Quality control in analytical chemistry, Wiley, (1993), pp. 125-130.
Verified by:
Gdańsk University of Technology

seen 152 times

Recommended for you

Meta Tags