From unextendible product bases to genuinely entangled subspaces - Publication - Bridge of Knowledge

Search

From unextendible product bases to genuinely entangled subspaces

Abstract

Unextendible product bases (UPBs) are interesting mathematical objects arising in composite Hilbert spaces that have found various applications in quantum information theory, for instance in a construction of bound entangled states or Bell inequalities without quantum violation. They are closely related to another important notion, completely entangled subspaces (CESs), which are those that do not contain any fully separable pure state. Among CESs one finds a class of subspaces in which all vectors are not only entangled but genuinely entangled. Here we explore the connection between UPBs and such genuinely entangled subspaces (GESs) and provide classes of nonorthogonal UPBs that lead to GESs for any number of parties and local dimensions. We then show how these subspaces can be immediately utilized for a simple general construction of genuinely entangled states in any such multipartite scenario.

Citations

  • 3 0

    CrossRef

  • 0

    Web of Science

  • 2 7

    Scopus

Cite as

Full text

download paper
downloaded 62 times
Publication version
Accepted or Published Version
License
Copyright (2018 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW A no. 98, edition 1, pages 1 - 13,
ISSN: 2469-9926
Language:
English
Publication year:
2018
Bibliographic description:
Demianowicz M., Augusiak R.: From unextendible product bases to genuinely entangled subspaces// PHYSICAL REVIEW A. -Vol. 98, iss. 1 (2018), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.1103/physreva.98.012313
Bibliography: test
  1. P. W. Shor, SIAM J. Comput. 26, 1484 (1997). open in new tab
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993). open in new tab
  3. M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007). open in new tab
  4. P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt, Science 332, 1059 (2011). open in new tab
  5. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014). open in new tab
  6. D. Cavalcanti and P. Skrzypczyk, Rep. Prog. Phys. 80, 024001 (2017). open in new tab
  7. G. Tóth, Phys. Rev. A 85, 022322 (2012). open in new tab
  8. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi, Phys. Rev. A 85, 022321 (2012). open in new tab
  9. R. Augusiak, J. Kołodyński, A. Streltsov, M. N. Bera, A. Acín, and M. Lewenstein, Phys. Rev. A 94, 012339 (2016). open in new tab
  10. M. Paraschiv, N. Miklin, T. Moroder, and O. Gühne, arXiv:1705.02696. open in new tab
  11. B. Lücke, J. Peise, G. Vitagliano, J. Arlt, L. Santos, G. Tóth, and C. Klempt, Phys. Rev. Lett. 112, 155304 (2014). open in new tab
  12. F. Fröwis, P. C. Strassman, A. Tiranov, C. Gut, J. Lavoie, N. Brunner, F. Busseries, M. Afzelius, and N. Gisin, Nat. Commun. 8, 907 (2017). open in new tab
  13. B. M. Terhal, Theor. Comput. Sci. 287, 313 (2002). open in new tab
  14. O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009). open in new tab
  15. L. Gurvits, J. Comput. Syst. Sci. 69, 448 (2004). open in new tab
  16. S. Gharibian, Quantum Inf. Comput. 10, 0343 (2010). open in new tab
  17. J. Tura, A. Aloy, R. Quesada, M. Lewenstein, and A. Sanpera, Quantum 2, 45 (2018). open in new tab
  18. B. V. R. Bhat, Int. J. Quantum Inform. 04, 325 (2006). open in new tab
  19. K. R. Parthasarathy, Proc. Math. Sci. 114, 365 (2004). open in new tab
  20. C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999). open in new tab
  21. D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Commun. Math. Phys. 238, 379 (2003). open in new tab
  22. N. Alon and L. Lovász, J. Combinat. Theor. Ser. A 95, 169 (2001). open in new tab
  23. S. B. Bravyi, Quantum Inf. Process. 3, 309 (2004). open in new tab
  24. S. M. Cohen, Phys. Rev. A 77, 012304 (2008). open in new tab
  25. A. O. Pittenger, Linear Alg. Appl. 359, 235 (2003). open in new tab
  26. R. Augusiak, J. Stasińska, C. Hadley, J. K. Korbicz, M. Lewenstein, and A. Acín, Phys. Rev. Lett. 107, 070401 (2011). open in new tab
  27. J. Chen and N. Johnston, Commun. Math. Phys. 333, 351 (2015). open in new tab
  28. N. Johnston, J. Phys. A 47, 424034 (2014). open in new tab
  29. Y.-H. Yang, F. Gao, G.-B. Xu, H.-J. Zuo, Z.-C. Zhang, and Q.-Y. Wen, Sci. Rep. 5, 11963 (2015). open in new tab
  30. S. Bandyopadhyay, A. Cosentino, N. Johnston, V. Russo, J. Watrous, and N. Yu, IEEE Trans. Inf. Theory 61, 3593 (2015). open in new tab
  31. J. Niset and N. J. Cerf, Phys. Rev. A 74, 052103 (2006). open in new tab
  32. J. M. Leinaas, J. Myrheim, and P. O. Sollid, Phys. Rev. A 81, 062330 (2010). open in new tab
  33. Ł. Skowronek, J. Math. Phys. 52, 122202 (2011). open in new tab
  34. T. Cubitt, A. Montanaro, and A. Winter, J. Math. Phys. 49, 022107 (2008). open in new tab
  35. D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Springer, New York, 2004). open in new tab
  36. R. Augusiak, J. Tura, and M. Lewenstein, J. Phys. A 44, 212001 (2011). open in new tab
  37. R. Sengupta, Arvind, and A. I. Singh, Phys. Rev. A 90, 062323 (2014). open in new tab
  38. M. Brannan and B. Collins, Commun. Math. Phys. 358, 1007 (2018). open in new tab
  39. J. Walgate and A. J. Scott, J. Phys. A 41, 375305 (2008). open in new tab
  40. G. Tóth and O. Gühne, Phys. Rev. Lett. 102, 170503 (2009). open in new tab
  41. M. Huber and R. Sengupta, Phys. Rev. Lett. 113, 100501 (2014). open in new tab
  42. R. Augusiak and M. Demianowicz (unpublished).
  43. M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac, Phys. Rev. A 63, 044304 (2001). open in new tab
  44. A. J. Scott, Phys. Rev. A 69, 052330 (2004). open in new tab
  45. R. Prabhu, A. Sen(De), and U. Sen, Phys. Rev. A 88, 042329 (2013). open in new tab
  46. M. Epping, H. Kampermann, C. Macchiavello, and D. Bruß, New J. Phys. 19, 093012 (2017). open in new tab
Verified by:
Gdańsk University of Technology

seen 110 times

Recommended for you

Meta Tags