Generation and Propagation of Nonlinear Waves in a Towing Tank - Publication - MOST Wiedzy


Generation and Propagation of Nonlinear Waves in a Towing Tank


The paper presents the results of the research focused on linear and nonlinear wave generation and propagation in a deepwater towing tank equipped with a single flap-type wavemaker of variable draft. The problem of wave generation and propagation has been theoretically formulated and solved by applying an analytical method; linear and nonlinear solutions were obtained. The linear solution has been verified experimentally. The laboratory experiments confirmed that a linear model can be applied to predict the generation and propagation of water waves of low steepness. However, according to the analysis, the discrepancies between wave profiles predicted by applying the linear and nonlinear models rapidly increases with increasing wave steepness. Additionally, the secondary phenomena which occur in the towing tank, including: disintegration of wave profile, wave reflections from the beach and wave damping, were analyzed. Knowledge on the nonlinear processes and phenomena is essential for modeling the environmental conditions during tests carried out to secure the safety of the naval and offshore constructions. The theoretical formulation was derived and the solution was obtained by the Institute of Hydroengineering of the Polish Academy of Sciences IBW PAN while the experimental research was carried out in Ship Hydromechanics Division of the Ship Design and Research Centre CTO S.A.


  • 1


  • 0

    Web of Science

  • 1



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Polish Maritime Research no. 26, pages 125 - 133,
ISSN: 1233-2585
Publication year:
Bibliographic description:
Drzewiecki M., Sulisz W.: Generation and Propagation of Nonlinear Waves in a Towing Tank// Polish Maritime Research. -Vol. 26, iss. 1 (2019), s.125-133
Digital Object Identifier (open in new tab) 10.2478/pomr-2019-0014
Bibliography: test
  1. Biesel F. and Suquet F.: Laboratory wave generating apparatus. Project Report No. 39, Minneapolis 1953. open in new tab
  2. Campos C., Silveira F. and Mendes M.: Waves inducted by non-permanent paddle movements. Coastal Engineering Proceedings, vol. 13, 1972 pp. 707-722.
  3. Drzewiecki M.: Digital Control System of the Wavemaker in the Towing Tank. Automatyka, elektryka, zakłócenia, vol. 7, no. 4, 2016, pp. 138-146. open in new tab
  4. Drzewiecki M.: Modelling, Simulation and Optimization of the Wavemaker in a Towing Tank. Trends in Advanced Intelligent Control, Optimization and Automation. Springer International Publishing AG, 2017, pp. 570-579. open in new tab
  5. Galvin C. J.: Wave-height prediction for wave generators in shallow water. Technical Memorandum No. 4, U.S. Army Corps of Engineers, 1964, Washington, pp. 1-20.
  6. Grilli S. and Horrillo J.: Numerical Generation and Absorption of Fully Nonlinear Periodic Waves. Journal of Engineering Mechanics, 123(10), 1997, pp. 1060-1069. open in new tab
  7. Havelock T. H.: Forced surface-wave on water. Philosophical Magazine, 7, 1929, pp. 569-576. open in new tab
  8. Hudspeth R. T. and Sulisz W.: Stokes drift in 2-D wave flumes. Journal of Fluid Mechanics, 230, 1991, pp. 209-229. open in new tab
  9. Keating T. and Webber N. B.: The generation of periodic waves in a laboratory channel; a comparison between theory and experiment. Proceedings of the Institution of Civil Engineers, 63, 1977, pp. 819-832. open in new tab
  10. Liu S-X., Teng B. and Yu Y-X.: Wave generation in a computation domain. Applied Mathematical Modelling, 29, 2005, pp. 1-17. open in new tab
  11. Liu X., Lin P. and Shao S.: ISPH wave simulation by using an internal wave maker. Coastal Engineering, 95, 2015, pp. 160-170. open in new tab
  12. Madsen O. S.: On the generation of long waves. Journal of Geophysical Research, 76, 1971, pp. 8672-8683. open in new tab
  13. Moubayed W. I. and Williams A. N.: Second-order bichromatic waves produced by a generic planar wavemaker in a two-dimensional wave flume. Journal of Fluids and Structures, 8, 1994, pp. 73-92. open in new tab
  14. Multer R H.: Exact nonlinear model of wave generator. Journal of Hydraulic Research, ASCE, 99, 1973, pp. 31-46.
  15. Schaffer H. A.: Second-order wavemaker theory for irregular waves. Ocean Engineering, 23, 1996, pp. 47-88. open in new tab
  16. Sulisz W. and Hudspeth R. T.: Complete second order solution for water waves generated in wave flumes. Journal of Fluids and Structures, 7(3), 1993, pp. 253-268. open in new tab
  17. Sulisz, W.: Diffraction of nonlinear waves by founded horizontal rectangular cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 124, 5, pp. 257-263. open in new tab
  18. Sulisz, W.: Reflection and transmission of nonlinear water waves at a semi-submerged dock. Archives of Mechanics, 65, 3, pp. 237-260.
  19. Ursell F., Dean R. G. and Yu Y. S.: Forced small amplitude waves: A comparison of theory and experiment. Journal of Fluid Mechanics, 7, 1960, pp. 33-52. open in new tab
  20. Wehausen J.V. and Laitone,F.V.: Surface Waves, Handbuch Der Physik. Vol. 9, Springer-Verlag, Berlin 1960. open in new tab
  21. Zhang X. T., Khoo B. C. and Lou. J.: Wave propagation in a fully nonlinear numerical wave tank: A desingularized method. Ocean Engineering, 33, 2006, pp. 2310-2331 open in new tab
  22. Zheng J., Soe M. M., Zhang C. and Hsu T-W.: Numerical wave flume with improved smoothed particle hydrodynamics. Journal of Hydrodynamics, 22(6) 2010, pp. 773-781 open in new tab
  23. CONTACT WITH THE AUTHORS Marcin Drzewiecki e-mail: open in new tab
Sources of funding:
  • Fundusz Badań Własnych Centrum Techniki Okrętowej S.A.
Verified by:
Gdańsk University of Technology

seen 41 times

Recommended for you

Meta Tags