Histogram of Oriented Gradients with Cell Average Brightness for Human Detection - Publication - Bridge of Knowledge

Search

Histogram of Oriented Gradients with Cell Average Brightness for Human Detection

Abstract

A modification of the descriptor in a human detector using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM) is presented. The proposed modification requires inserting the values of average cell brightness resulting in the increase of the descriptor length from 3780 to 3908 values, but it is easy to compute and instantly gives ≈ 25% improvement of the miss rate at 10‒4 False Positives Per Window (FPPW). The modification has been tested on two versions of HOG-based descriptors: the classic Dalal-Triggs and the modified one, where, instead of spatial Gaussian masks for blocks, an additional central cell has been used. The proposed modification is suitable for hardware implementations of HOG-based detectors, enabling an increase of the detection accuracy or resignation from the use of some hardware-unfriendly operations, such as a spatial Gaussian mask. The results of testing its influence on the brightness changes of test images are also presented. The descriptor may be used in sensor networks equipped with hardware acceleration of image processing to detect humans in the images.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cite as

Full text

download paper
downloaded 47 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Metrology and Measurement Systems no. 23, edition 1, pages 27 - 36,
ISSN: 0860-8229
Publication year:
2016
Bibliographic description:
Wójcikowski M.: Histogram of Oriented Gradients with Cell Average Brightness for Human Detection// Metrology and Measurement Systems. -Vol. 23, iss. 1 (2016), s.27-36
DOI:
Digital Object Identifier (open in new tab) 10.1515/mms-2016-0012
Bibliography: test
  1. Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human detection. Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit., 886-893. open in new tab
  2. Viola, P., Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit., 511-518. open in new tab
  3. Ma, Y., Chen, X., Jin, L., Chen, G. (2011). A monocular human detection system based on EOH and oriented LBP features. Proc. 7th Int. Conf. Adv. Visual Comput., I, 551-562. open in new tab
  4. Ma, Y., Deng, L., Chen, X., Guo, N. (2013). Integrating Orientation Cue With EOH-OLBP-Based Multilevel Features for Human Detection. IEEE Trans. Circuits Syst. Video Technol., 23(10), 1755-1766. open in new tab
  5. Boser, B. E., Guyon, I., Vapnik V. (1992). A training algorithm for optimal margin classifiers. Proc. Fifth Annual Workshop on Computational Learning Theory, ACM Press, 144-152. open in new tab
  6. Cortes, C., Vapnik, V. (1995). Support-vector network. Machine Learning, 20:273-297. open in new tab
  7. Cui, J., Wang, Y., (2010). A Novel Approach of Analog Fault Classification Using a Support Vector Machines Classifier. Metrology and Measurement Systems, 17(4), 561-581. open in new tab
  8. Wójtowicz, B., Dobrowolski, A., Tomczykiewicz, K., (2015). Fall Detector Using Discrete Wavelet Decomposition And SVM Classifier. Metrology and Measurement Systems, 22(2), 303-314. open in new tab
  9. Zhang, H., Bai, X., Zhou, J., Cheng, J., Zhao H. (2013). Object Detection via Structural Fe ature Selection and Shape Model. IEEE Trans. Image Process., 22(12), 4984-4995.
  10. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Comput. Vision, 60(2), 91-110. open in new tab
  11. Zhu, Q., Yeh, M.-C., Cheng, K.-T., Avidan, S. (2006). Fast human detection using a cascade of histograms of oriented gradients. Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit., 2, 491-1498.
  12. Zeng, H.-C., Huang, S.-H., Lai, S.-H. (2008). Real-time video surveillance based on combining foreground extraction and human detection. Proc. 14th Int. Multimedia Modeling Conf., MMM 2008, Kyoto, Japan, 70-79. open in new tab
  13. Chen, Y.-T., Chen, C.-S. (2008). Fast human detection using a novel boosted cascading structure with meta stages. IEEE Trans. Image Process., 17(8), 1452-1464.
  14. Cheng, H.-Y., Zeng, Y.-J., Lee C.-C., Hsu S.-H. (2013). Segmentation of Pedestrians with Confidence Level Computation, Journal of Signal Processing Systems, 72(2), 87-97. open in new tab
  15. Wang, X., Han, T. X., Yan, S. (2009). An HOG-LBP human detector with partial occlusion handling. Proc. IEEE Int. Conf. on Comput. Vision, ICCV 2009 , Kyoto, 32-39. open in new tab
  16. Geismann, P., Knoll, A. (2010). Speeding Up HOG and LBP Features for Pedestrian Detection by Multiresolution Techniques. Proc. 6th Int. Symposium Advances in Visual Computing, ISVC 2010, Las Vegas, NV, USA, 243-252. open in new tab
  17. Zeng, C., Ma, H, Ming, A. (2010). Fast human detection using mi-sVM and a cascade of HOG-LBP features. Proc. 17th IEEE Int. Conf. on Image Processing (ICIP) , 3845-3848, open in new tab
  18. Crow, F. (1984). Summed-area tables for texture mapping. Proc. of SIGGRAPH, 18(3), 207-212. open in new tab
  19. Takagi, K., Tanaka, K., Izumi, S., Kawaguchi H., Yoshimoto M. (2014). A Real-time Scalable Object Detection System using Low-power HOG Accelerator VLSI. Journal of Signal Processing Systems, doi 10.1007/s11265-014-0870-7. open in new tab
  20. Jendernalik, W., Blakiewicz, G., Handkiewicz, A., Melosik, M. (2013). Analogue CMOS ASICs in Image Processing Systems. Metrology and Measurement Systems, 20(4), 613-622. open in new tab
  21. Everingham, M., Zisserman, A., Williams, C. K .I., Van Gool, L. (2006). The PASCAL Visual Object Classes Challenge 2006 (VOC 2006) Results. Technical Report, Univ. of Oxford. open in new tab
  22. Chang, C.-C., Lin, C.-J. (2011). LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3) 27:1-27:27. open in new tab
Verified by:
Gdańsk University of Technology

seen 164 times

Recommended for you

Meta Tags