How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image - Publication - Bridge of Knowledge

Search

How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

Abstract

This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation states. Additionally, this work presents a system for obstacle detection based on image processing. The implemented system constitutes a complementary part of the interface. The main contributions of this work include the proposal of a modified 10–20-electrode setup suitable for motor imagery classification, the design of two convolutional neural network (CNNs) models employed to classify signals acquired from sixteen EEG channels, and the implementation of an obstacle detection system based on computer vision integrated with a brain-machine interface. The models developed in this study achieved an accuracy of 83% in classifying EEG signals. The resulting classification outcomes were subsequently utilized to control the movement of a mobile robot. Experimental trials conducted on a designated test track demonstrated real-time control of the robot. The findings indicate the feasibility of integration of the obstacle detection system for collision avoidance with the classification of motor imagery for the purpose of brain-machine interface control of vehicles. The elaborated solution could help paralyzed patients to safely control a wheelchair through EEG and effectively prevent unintended vehicle movements

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Authors (5)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SENSORS no. 24,
ISSN: 1424-8220
Language:
English
Publication year:
2024
Bibliographic description:
Kocejko T., Matuszkiewicz N., Kwiatkowski J., Durawa P., Madajczak A.: How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image// SENSORS -Vol. 24,iss. 3 (2024), s.918-
DOI:
Digital Object Identifier (open in new tab) 10.3390/s24030918
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 69 times

Recommended for you

Meta Tags