How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image - Publikacja - MOST Wiedzy

Wyszukiwarka

How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

Abstrakt

This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation states. Additionally, this work presents a system for obstacle detection based on image processing. The implemented system constitutes a complementary part of the interface. The main contributions of this work include the proposal of a modified 10–20-electrode setup suitable for motor imagery classification, the design of two convolutional neural network (CNNs) models employed to classify signals acquired from sixteen EEG channels, and the implementation of an obstacle detection system based on computer vision integrated with a brain-machine interface. The models developed in this study achieved an accuracy of 83% in classifying EEG signals. The resulting classification outcomes were subsequently utilized to control the movement of a mobile robot. Experimental trials conducted on a designated test track demonstrated real-time control of the robot. The findings indicate the feasibility of integration of the obstacle detection system for collision avoidance with the classification of motor imagery for the purpose of brain-machine interface control of vehicles. The elaborated solution could help paralyzed patients to safely control a wheelchair through EEG and effectively prevent unintended vehicle movements

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Autorzy (5)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 24,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Kocejko T., Matuszkiewicz N., Kwiatkowski J., Durawa P., Madajczak A.: How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image// SENSORS -Vol. 24,iss. 3 (2024), s.918-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s24030918
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 65 razy

Publikacje, które mogą cię zainteresować

Meta Tagi