Abstrakt
Most of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables of the signal and their relation is considered by means of a multivariate data analysis, i.e., Parallel Factor Analysis (PARAFAC). In previous works, this method has demonstrated to be useful for EEG analysis. Nevertheless, to the best of our knowledge, this is the first attempt to analyze imagined speech signals using this approach. In addition, a novel use of the extracted PARAFAC components is proposed in order to improve the discrimination of the imagined words. The obtained results, besides of higher accuracy rates in comparison with related works, showed lower standard deviation among subjects suggesting the effectiveness and robustness of the proposed method. These results encourage the use of multivariate analysis for BCI applications in combination with imagined speech signals.
Cytowania
-
6
CrossRef
-
0
Web of Science
-
1 3
Scopus
Autorzy (4)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Opublikowano w:
-
LECTURE NOTES IN COMPUTER SCIENCE
strony 239 - 249,
ISSN: 0302-9743 - Tytuł wydania:
- Advances in Computational Intelligence strony 239 - 249
- Język:
- angielski
- Rok wydania:
- 2018
- Opis bibliograficzny:
- Garcia Salinas J., Villaseñor-Pineda L., Reyes-Garćia C. A., Torres-García A. A.: Tensor Decomposition for Imagined Speech Discrimination in EEG// Advances in Computational Intelligence/ : , 2018, s.239-249
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-3-030-04497-8_20
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 92 razy
Publikacje, które mogą cię zainteresować
Decoding imagined speech for EEG-based BCI
- C. A. Reyes-García,
- A. A. Torres-García,
- T. Hernández-del-Toro
- + 2 autorów
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
- J. Garcia Salinas,
- A. A. Torres-García,
- C. A. Reyes-Garćia
- + 1 autorów
Transfer learning in imagined speech EEG-based BCIs
- J. Garcia Salinas,
- L. Villaseñor-Pineda,
- C. A. Reyes-Garćia
- + 1 autorów
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
- A. A. Torres-García,
- J. Garcia Salinas,
- L. Villaseñor-Pineda