Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt - Publication - Bridge of Knowledge

Search

Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt

Abstract

Glaciers accumulate organic pollutants delivered by snow. However, our understanding of the exact dynamics of organic pollutants in the snowpack relies primarily on laboratory experiments and mathematical models. To fill the gap related to the detailed field data, we have conducted observations of melting snow profiles in two locations and three different stages of melting on one High Arctic glacier, as well as in superimposed ice. We monitored the chemical concentrations of formaldehyde, phenols, short-chain carboxylic acids, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and snow water equivalents to derive chemical loads. The obtained organic contaminant redistribution patterns are compared to the meltwater removal model by Meyer and Wania (2011), in order to link the behaviour of chemicals to their hydrophilic or hydrophobic properties. Both the later snowpits and the superimposed ice layer were generally more abundant in particulate organics and hydrophobic compounds, despite the initial prevalence of hydrophilic organic chemicals. The chemical species with high water solubility also showed less predictable elution patterns, due to their chemical reactivity and possible photochemical reactions in the snowpack. Finally, ice layers in the snowpack showed very different chemical characteristics to the underlying superimposed ice, so one cannot be used as a chemical proxy for another. In order to interpret the ice core records correctly, the temporal changes in concentration of different pollutant types should be considered, as glaciers may preferentially accumulate hydrophobic organics that tarry in the snow cover.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 4

    Scopus

Cite as

Full text

download paper
downloaded 21 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 596-597, pages 158 - 168,
ISSN: 0048-9697
Language:
English
Publication year:
2017
Bibliographic description:
Kozioł K., Kozak K., Polkowska Ż.: Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt// SCIENCE OF THE TOTAL ENVIRONMENT. -Vol. 596-597, (2017), s.158-168
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2017.04.061
Bibliography: test
  1. Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M., Barbante, C., Boutron, C., Ferrari, C., 2007. Bacterial characterization of the snow cover at Spitzberg, Sval- bard. FEMS Microbiol. Ecol. 59:255-264. http://dx.doi.org/10.1111/j.1574-6941. 2006.00198.x. open in new tab
  2. Bikkina, S., Kawamura, K., Miyazaki, Y., 2015. Latitudinal distributions of atmospheric di- carboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pa- cific: sources and formation pathways. J. Geophys. Res. Atmos.:5010-5035 http:// dx.doi.org/10.1002/2014JD022235. open in new tab
  3. Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F.S., Scheringer, M., Hungerbühler, K., 2009. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ. Sci. Technol. 43:8173-8177. http://dx.doi.org/10.1021/ es901628x. open in new tab
  4. Bogdal, C., Nikolic, D., Lüthi, M.P., Schenker, U., Scheringer, M., Hungerbühler, K., 2010. Re- lease of legacy pollutants from melting glaciers: model evidence and conceptual Fig. 6 (continued). open in new tab
  5. understanding. Environ. Sci. Technol. 44:4063-4069. http://dx.doi.org/10.1021/ es903007h. open in new tab
  6. Brimblecombe, P., Clegg, S.L., Davies, T.D., Shooter, D., Tranter, M., 1987. Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Res. 21, 1279-1286. open in new tab
  7. Comiso, J.C., Hall, D.K., 2014. Climate trends in the Arctic as observed from space. WIREs Clim. Chang. 5:389-409. http://dx.doi.org/10.1002/wcc.277. open in new tab
  8. Cragin, J.H., Hewitt, A.D., Colbeck, S.C., 1993. Elution of ions from melting snow (Chro- matographic versus metamorphic mechanisms). open in new tab
  9. Cragin, J.H., Hewitt, A.D., Colbeck, S.C., 1996. Grain-scale mechanisms influencing the elu- tion of ions from snow. Atmopsheric Environ. 30, 119-127. open in new tab
  10. Hammes, F., Broger, T., Weilenmann, H.-U., Vital, M., Helbing, J., Bosshart, U., Huber, P., Odermatt, R.P., Sonnleitner, B., 2012. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry A 81A:508-516. http://dx.doi.org/10.1002/cyto.a.22048. open in new tab
  11. Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydro- carbons (PAHs): a review. J. Hazard. Mater. 169:1-15. http://dx.doi.org/10.1016/j. jhazmat.2009.03.137. open in new tab
  12. Hodgkins, R., Tranter, M., 1998. Solute in high Arctic Glacier snow cover and its impact on runoff chemistry. Ann. Glaciol. 26, 156-160. open in new tab
  13. Hollesen, J., Buchwal, A., Rachlewicz, G., Hansen, B.U., Hansen, M.O., Stecher, O., Elberling, B., 2015. Winter warming as an important co-driver for Betula nana growth in west- ern Greenland during the past century. Glob. Chang. Biol. 21:2410-2423. http://dx. doi.org/10.1111/gcb.12913. open in new tab
  14. Hood, E., Battin, T.J., Fellman, J., O'Neel, S., Spencer, R.G.M., 2015. Storage and release of or- ganic carbon from glaciers and ice sheets. Nat. Geosci. 1-6. http://dx.doi.org/10.1038/ ngeo2331. open in new tab
  15. Joranger, E., Semb, A., 1989. Major ions and scavenging of sulphate in the norwegian arc- tic. Atmos. Environ. 23:2463-2469. http://dx.doi.org/10.1016/0004-6981(89)90257- 6. open in new tab
  16. Kastovská, K., Elster, J., Stibal, M., Santrůcková, H., 2005. Microbial assemblages in soil mi- crobial succession after glacial retreat in Svalbard (high Arctic). Microb. Ecol. 50: 396-407. http://dx.doi.org/10.1007/s00248-005-0246-4. open in new tab
  17. Kozak, K., Polkowska, Ż., Ruman, M., Kozioł, K., Namieśnik, J., 2013. Analytical studies on the environmental state of the Svalbard archipelago provide a critical source of information about anthropogenic global impact. TrAC -Trends Anal. Chem. 50: 107-126. http://dx.doi.org/10.1016/j.trac.2013.04.016. open in new tab
  18. Liston, G.E., Hiemstra, C.A., 2011. The changing cryosphere: pan-Arctic snow trends (1979-2009). J. Clim. 24:5691-5712. http://dx.doi.org/10.1175/JCLI-D-11-00081.1. open in new tab
  19. Meyer, T., Wania, F., 2011. Modeling the elution of organic chemicals from a melting ho- mogeneous snow pack. Water Res. 45:3627-3637. http://dx.doi.org/10.1016/j. watres.2011.04.011. open in new tab
  20. Meyer, T., Lei, Y.D., Muradi, I., Wania, F., 2009a. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ. Sci. Technol. 43, 657-662. open in new tab
  21. Meyer, T., Lei, Y.D., Muradi, I., Wania, F., 2009b. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics. Environ. Sci. Technol. 43, 663-668. open in new tab
  22. Rome, K., McIntyre, A., 2012. Intelligent use of relative response factors in gas chromatog- raphy-flame ionisation detection. Chromatogr. Today 52-56.
  23. Stubbins, A., Hood, E., Raymond, P.A., Aiken, G.R., Sleighter, R.L., Hernes, P.J., Butman, D., Hatcher, P.G., Striegl, R.G., Schuster, P., Abdulla, H.a.N., Vermilyea, A.W., Scott, D.T., Spencer, R.G.M., 2012. Anthropogenic aerosols as a source of ancient dissolved organ- ic matter in glaciers. Nat. Geosci. 5:198-201. http://dx.doi.org/10.1038/ngeo1403. open in new tab
  24. Sumner, A.L., Shepson, P.B., 1999. Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398, 230-233. open in new tab
  25. UNECE, 2010. Hemispheric Transport of Air Pollution 2010, Part C: Persistent Organic Pol- lutants. United Nations, New York and Geneva. open in new tab
  26. Van Nevel, S., Koetzsch, S., Weilenmann, H.-U., Boon, N., Hammes, F., 2013. Routine bac- terial analysis with automated flow cytometry. J. Microbiol. Methods 94:73-76. http://dx.doi.org/10.1016/j.mimet.2013.05.007. open in new tab
  27. Yuan, S.Y., Wei, S.H., Chang, B.V., 2000. Biodegradation of polycyclic aromatic hydrocar- bons by a mixed culture. Chemosphere 41, 1463-1468. open in new tab
  28. Zdanowicz, C., Smetny-Sowa, A., Fisher, D., Schaffer, N., Copland, L., Eley, J., Dupont, F., 2012. Summer melt rates on Penny Ice Cap, Baffin Island: past and recent trends and implications for regional climate. J. Geophys. Res. Earth Surf. 117:1-21. http:// dx.doi.org/10.1029/2011JF002248. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 123 times

Recommended for you

Meta Tags