Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt - Publikacja - MOST Wiedzy


Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt


Glaciers accumulate organic pollutants delivered by snow. However, our understanding of the exact dynamics of organic pollutants in the snowpack relies primarily on laboratory experiments and mathematical models. To fill the gap related to the detailed field data, we have conducted observations of melting snow profiles in two locations and three different stages of melting on one High Arctic glacier, as well as in superimposed ice. We monitored the chemical concentrations of formaldehyde, phenols, short-chain carboxylic acids, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) and snow water equivalents to derive chemical loads. The obtained organic contaminant redistribution patterns are compared to the meltwater removal model by Meyer and Wania (2011), in order to link the behaviour of chemicals to their hydrophilic or hydrophobic properties. Both the later snowpits and the superimposed ice layer were generally more abundant in particulate organics and hydrophobic compounds, despite the initial prevalence of hydrophilic organic chemicals. The chemical species with high water solubility also showed less predictable elution patterns, due to their chemical reactivity and possible photochemical reactions in the snowpack. Finally, ice layers in the snowpack showed very different chemical characteristics to the underlying superimposed ice, so one cannot be used as a chemical proxy for another. In order to interpret the ice core records correctly, the temporal changes in concentration of different pollutant types should be considered, as glaciers may preferentially accumulate hydrophobic organics that tarry in the snow cover.


  • 1 3


  • 1 3

    Web of Science

  • 1 3


Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SCIENCE OF THE TOTAL ENVIRONMENT nr 596-597, strony 158 - 168,
ISSN: 0048-9697
Rok wydania:
Opis bibliograficzny:
Kozioł K., Kozak K., Polkowska Ż.: Hydrophobic and hydrophilic properties of pollutants as a factor influencing their redistribution during snowpack melt// SCIENCE OF THE TOTAL ENVIRONMENT. -Vol. 596-597, (2017), s.158-168
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.scitotenv.2017.04.061
Bibliografia: test
  1. Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M., Barbante, C., Boutron, C., Ferrari, C., 2007. Bacterial characterization of the snow cover at Spitzberg, Sval- bard. FEMS Microbiol. Ecol. 59:255-264. http://dx.doi.org/10.1111/j.1574-6941. 2006.00198.x. otwiera się w nowej karcie
  2. Bikkina, S., Kawamura, K., Miyazaki, Y., 2015. Latitudinal distributions of atmospheric di- carboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pa- cific: sources and formation pathways. J. Geophys. Res. Atmos.:5010-5035 http:// dx.doi.org/10.1002/2014JD022235. otwiera się w nowej karcie
  3. Bogdal, C., Schmid, P., Zennegg, M., Anselmetti, F.S., Scheringer, M., Hungerbühler, K., 2009. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environ. Sci. Technol. 43:8173-8177. http://dx.doi.org/10.1021/ es901628x. otwiera się w nowej karcie
  4. Bogdal, C., Nikolic, D., Lüthi, M.P., Schenker, U., Scheringer, M., Hungerbühler, K., 2010. Re- lease of legacy pollutants from melting glaciers: model evidence and conceptual Fig. 6 (continued). otwiera się w nowej karcie
  5. understanding. Environ. Sci. Technol. 44:4063-4069. http://dx.doi.org/10.1021/ es903007h. otwiera się w nowej karcie
  6. Brimblecombe, P., Clegg, S.L., Davies, T.D., Shooter, D., Tranter, M., 1987. Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Res. 21, 1279-1286. otwiera się w nowej karcie
  7. Comiso, J.C., Hall, D.K., 2014. Climate trends in the Arctic as observed from space. WIREs Clim. Chang. 5:389-409. http://dx.doi.org/10.1002/wcc.277. otwiera się w nowej karcie
  8. Cragin, J.H., Hewitt, A.D., Colbeck, S.C., 1993. Elution of ions from melting snow (Chro- matographic versus metamorphic mechanisms). otwiera się w nowej karcie
  9. Cragin, J.H., Hewitt, A.D., Colbeck, S.C., 1996. Grain-scale mechanisms influencing the elu- tion of ions from snow. Atmopsheric Environ. 30, 119-127. otwiera się w nowej karcie
  10. Hammes, F., Broger, T., Weilenmann, H.-U., Vital, M., Helbing, J., Bosshart, U., Huber, P., Odermatt, R.P., Sonnleitner, B., 2012. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry A 81A:508-516. http://dx.doi.org/10.1002/cyto.a.22048. otwiera się w nowej karcie
  11. Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydro- carbons (PAHs): a review. J. Hazard. Mater. 169:1-15. http://dx.doi.org/10.1016/j. jhazmat.2009.03.137. otwiera się w nowej karcie
  12. Hodgkins, R., Tranter, M., 1998. Solute in high Arctic Glacier snow cover and its impact on runoff chemistry. Ann. Glaciol. 26, 156-160. otwiera się w nowej karcie
  13. Hollesen, J., Buchwal, A., Rachlewicz, G., Hansen, B.U., Hansen, M.O., Stecher, O., Elberling, B., 2015. Winter warming as an important co-driver for Betula nana growth in west- ern Greenland during the past century. Glob. Chang. Biol. 21:2410-2423. http://dx. doi.org/10.1111/gcb.12913. otwiera się w nowej karcie
  14. Hood, E., Battin, T.J., Fellman, J., O'Neel, S., Spencer, R.G.M., 2015. Storage and release of or- ganic carbon from glaciers and ice sheets. Nat. Geosci. 1-6. http://dx.doi.org/10.1038/ ngeo2331. otwiera się w nowej karcie
  15. Joranger, E., Semb, A., 1989. Major ions and scavenging of sulphate in the norwegian arc- tic. Atmos. Environ. 23:2463-2469. http://dx.doi.org/10.1016/0004-6981(89)90257- 6. otwiera się w nowej karcie
  16. Kastovská, K., Elster, J., Stibal, M., Santrůcková, H., 2005. Microbial assemblages in soil mi- crobial succession after glacial retreat in Svalbard (high Arctic). Microb. Ecol. 50: 396-407. http://dx.doi.org/10.1007/s00248-005-0246-4. otwiera się w nowej karcie
  17. Kozak, K., Polkowska, Ż., Ruman, M., Kozioł, K., Namieśnik, J., 2013. Analytical studies on the environmental state of the Svalbard archipelago provide a critical source of information about anthropogenic global impact. TrAC -Trends Anal. Chem. 50: 107-126. http://dx.doi.org/10.1016/j.trac.2013.04.016. otwiera się w nowej karcie
  18. Liston, G.E., Hiemstra, C.A., 2011. The changing cryosphere: pan-Arctic snow trends (1979-2009). J. Clim. 24:5691-5712. http://dx.doi.org/10.1175/JCLI-D-11-00081.1. otwiera się w nowej karcie
  19. Meyer, T., Wania, F., 2011. Modeling the elution of organic chemicals from a melting ho- mogeneous snow pack. Water Res. 45:3627-3637. http://dx.doi.org/10.1016/j. watres.2011.04.011. otwiera się w nowej karcie
  20. Meyer, T., Lei, Y.D., Muradi, I., Wania, F., 2009a. Organic contaminant release from melting snow. 1. Influence of chemical partitioning. Environ. Sci. Technol. 43, 657-662. otwiera się w nowej karcie
  21. Meyer, T., Lei, Y.D., Muradi, I., Wania, F., 2009b. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics. Environ. Sci. Technol. 43, 663-668. otwiera się w nowej karcie
  22. Rome, K., McIntyre, A., 2012. Intelligent use of relative response factors in gas chromatog- raphy-flame ionisation detection. Chromatogr. Today 52-56.
  23. Stubbins, A., Hood, E., Raymond, P.A., Aiken, G.R., Sleighter, R.L., Hernes, P.J., Butman, D., Hatcher, P.G., Striegl, R.G., Schuster, P., Abdulla, H.a.N., Vermilyea, A.W., Scott, D.T., Spencer, R.G.M., 2012. Anthropogenic aerosols as a source of ancient dissolved organ- ic matter in glaciers. Nat. Geosci. 5:198-201. http://dx.doi.org/10.1038/ngeo1403. otwiera się w nowej karcie
  24. Sumner, A.L., Shepson, P.B., 1999. Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398, 230-233. otwiera się w nowej karcie
  25. UNECE, 2010. Hemispheric Transport of Air Pollution 2010, Part C: Persistent Organic Pol- lutants. United Nations, New York and Geneva. otwiera się w nowej karcie
  26. Van Nevel, S., Koetzsch, S., Weilenmann, H.-U., Boon, N., Hammes, F., 2013. Routine bac- terial analysis with automated flow cytometry. J. Microbiol. Methods 94:73-76. http://dx.doi.org/10.1016/j.mimet.2013.05.007. otwiera się w nowej karcie
  27. Yuan, S.Y., Wei, S.H., Chang, B.V., 2000. Biodegradation of polycyclic aromatic hydrocar- bons by a mixed culture. Chemosphere 41, 1463-1468. otwiera się w nowej karcie
  28. Zdanowicz, C., Smetny-Sowa, A., Fisher, D., Schaffer, N., Copland, L., Eley, J., Dupont, F., 2012. Summer melt rates on Penny Ice Cap, Baffin Island: past and recent trends and implications for regional climate. J. Geophys. Res. Earth Surf. 117:1-21. http:// dx.doi.org/10.1029/2011JF002248. otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 98 razy

Publikacje, które mogą cię zainteresować

Meta Tagi