Improving css-KNN Classification Performance by Shifts in Training Data - Publication - Bridge of Knowledge

Search

Improving css-KNN Classification Performance by Shifts in Training Data

Abstract

This paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose a training data preprocessing phase that tries to alleviate the lack of learning. The idea is to compute training data modifications, such that class representative instances are optimized before the actual k-NN algorithm is employed. The empirical text classification experiments using mid-size Wikipedia data sets show that carefully cross-validated settings of such preprocessing yields significant improvements in k-NN performance compared to classification without this step. The proposed approach can be useful for improving the effectivenes of other classifiers as well as it can find applications in domain of recommendation systems and keyword-based search.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Title of issue:
1st International KEYSTONE Conference (IKC) strony 51 - 63
Language:
English
Publication year:
2015
Bibliographic description:
Draszawka K., Szymański J., Guerra F..: Improving css-KNN Classification Performance by Shifts in Training Data, W: 1st International KEYSTONE Conference (IKC), 2015, ,.
DOI:
Digital Object Identifier (open in new tab) 10.1007/978-3-319-27932-9_5
Verified by:
Gdańsk University of Technology

seen 138 times

Recommended for you

Meta Tags