Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal - Publication - Bridge of Knowledge

Search

Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal

Abstract

The electrochemical oxidative treatment of landfill leachates (LLs) containing high amounts of ammonia nitrogen and organic matter was used as a promising method, prior to biological processes, to achieve the final effluent quality that would be acceptable by current regulations. The deposited boron-doped diamond electrodes (BDDs) with different boron doping concentrations (10000, 5000 and 500 ppm of B) were applied as anodes. The results showed that the boron doping level influences the electrochemical activity and selectivity of electrode surface due to a decrease in the sp3/sp2 ratio of the BDD material. Special attention was paid to the oxidation efficiency of organic matter (COD = 4225 mg O2/L, BOD = 366 mg O2/L) and ammonia (2270 mg N-NH4+/dm3) in the investigated LLs. Additionally, bisphenol A (BPA; 1539.6 μg/L), a suspected endocrine disruptor, was studied as a potential indicator of the removal efficiency of micropollutants. It was found that the oxidation of BPA and BOD are correlated with the sp3/sp2 ratio, while a decrease in the sp3/sp2 ratio of the BDD material was associated with the elevated efficiency of N-NH4+ removal. Low pH and the addition of Fe(II) salts suppressed the oxygen evolution reaction, and overcame the mass transport limitation of organics in the case of •OH-mediated oxidation. Regarding the elimination of ammonium nitrogen, lower effectiveness was generally achieved in comparison to the COD removal. The maximum removal of COD and ammonium nitrogen reached 79 and 41%, respectively. These values were much higher than those reported in the previous study involving a single-cell flow reactor. Thus, anaerobic ammonium oxidation (Anammox) processes seem to be a reasonable option as a final step of LL treatment.

Citations

  • 4 9

    CrossRef

  • 0

    Web of Science

  • 4 9

    Scopus

Cite as

Full text

download paper
downloaded 108 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CHEMICAL ENGINEERING JOURNAL no. 334, pages 1074 - 1084,
ISSN: 1385-8947
Language:
English
Publication year:
2018
Bibliographic description:
Fudala-Książek S., Sobaszek M., Łuczkiewicz A., Pieczyńska A., Ofiarska A., Fiszka-Borzyszkowska A., Sawczak M., Ficek M., Bogdanowicz R., Siedlecka E.: Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal// CHEMICAL ENGINEERING JOURNAL. -Vol. 334, (2018), s.1074-1084
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.cej.2017.09.196
Bibliography: test
  1. C.B. Öman, C. Junestedt, Chemical characterization of landfill leachates -400 parameters and compounds, Waste Management. 28 (2008) 1876-1891. doi:10.1016/j.wasman.2007.06.018. open in new tab
  2. X.-S. He, B.-D. Xi, R.-T. Gao, H. Zhang, Q.-L. Dang, D. Li, C.-H. Huang, Insight into the composition and degradation potential of dissolved organic matter with different hydrophobicity in landfill leachates, Chemosphere. 144 (2016) 75-80. doi:10.1016/j.chemosphere.2015.08.071. open in new tab
  3. T. Eggen, M. Moeder, A. Arukwe, Municipal landfill leachates: A significant source for new and emerging pollutants, Science of The Total Environment. 408 (2010) 5147- 5157. doi:10.1016/j.scitotenv.2010.07.049. open in new tab
  4. D. Fatta, A. Papadopoulos, M. Loizidou, A study on the landfill leachate and its impact on the groundwater quality of the greater area, Environmental Geochemistry and Health. 21 (1999) 175-190. doi:10.1023/A:1006613530137. open in new tab
  5. S. Mor, K. Ravindra, R.P. Dahiya, A. Chandra, Leachate Characterization and Assessment of Groundwater Pollution Near Municipal Solid Waste Landfill Site, Environ Monit Assess. 118 (2006) 435-456. doi:10.1007/s10661-006-1505-7. open in new tab
  6. N. Calace, A. Liberatori, B.M. Petronio, M. Pietroletti, Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals, Environmental Pollution. 113 (2001) 331-339. doi:10.1016/S0269-7491(00)00186-X. open in new tab
  7. R.B. Brennan, M.G. Healy, L. Morrison, S. Hynes, D. Norton, E. Clifford, Management of landfill leachate: The legacy of European Union Directives, Waste Management. 55 (2016) 355-363. doi:10.1016/j.wasman.2015.10.010. open in new tab
  8. M. Morozesk, M.M. Bonomo, I. da C. Souza, L.D. Rocha, I.D. Duarte, I.O. Martins, L.B. Dobbss, M.T.W.D. Carneiro, M.N. Fernandes, S.T. Matsumoto, Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis, Chemosphere. 184 (2017) 309-317. doi:10.1016/j.chemosphere.2017.06.007. open in new tab
  9. S. Fudala-Ksiazek, M. Pierpaoli, E. Kulbat, A. Luczkiewicz, A modern solid waste management strategy -the generation of new by-products, Waste Management. 49 (2016) 516-529. doi:10.1016/j.wasman.2016.01.022. open in new tab
  10. E. Kattel, A. Kivi, K. Klein, T. Tenno, N. Dulova, M. Trapido, Hazardous waste landfill leachate treatment by combined chemical and biological techniques, Desalination and Water Treatment. 57 (2016) 13236-13245. doi:10.1080/19443994.2015.1057539. open in new tab
  11. S.M. Iskander, B. Brazil, J.T. Novak, Z. He, Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives, Bioresource Technology. 201 (2016) 347-354. doi:10.1016/j.biortech.2015.11.051. open in new tab
  12. H. Yoo, K. Oh, G. Lee, J. Choi, RuO2-Doped Anodic TiO2 Nanotubes for Water Oxidation: Single-Step Anodization vs Potential Shock Method, J. Electrochem. Soc. 164 (2017) H104-H111. doi:10.1149/2.1201702jes. open in new tab
  13. L. Labiadh, A. Barbucci, M.P. Carpanese, A. Gadri, S. Ammar, M. Panizza, Direct and indirect electrochemical oxidation of Indigo Carmine using PbO2 and TiRuSnO2, J Solid State Electrochem. 21 (2017) 2167-2175. doi:10.1007/s10008-017-3559-6. open in new tab
  14. D. Clematis, G. Cerisola, M. Panizza, Electrochemical oxidation of a synthetic dye using a BDD anode with a solid polymer electrolyte, Electrochemistry Communications. 75 (2017) 21-24. doi:10.1016/j.elecom.2016.12.008. open in new tab
  15. F.L. Souza, C. Saéz, M.R.V. Lanza, P. Cañizares, M.A. Rodrigo, The effect of the sp3/sp2 carbon ratio on the electrochemical oxidation of 2,4-D with p-Si BDD anodes, Electrochimica Acta. 187 (2016) 119-124. doi:10.1016/j.electacta.2015.11.031. open in new tab
  16. R. Cossu, A.M. Polcaro, M.C. Lavagnolo, M. Mascia, S. Palmas, F. Renoldi, Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/PbO2 and Ti/SnO2 open in new tab
  17. Anodes, Environ. Sci. Technol. 32 (1998) 3570-3573. doi:10.1021/es971094o. open in new tab
  18. P.B. Moraes, R. Bertazzoli, Electrodegradation of landfill leachate in a flow electrochemical reactor, Chemosphere. 58 (2005) 41-46. doi:10.1016/j.chemosphere.2004.09.026. open in new tab
  19. Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process, Water Research. 40 (2006) 3683-3694. doi:10.1016/j.watres.2006.08.009. open in new tab
  20. M. Panizza, C.A. Martinez-Huitle, Role of electrode materials for the anodic oxidation of a real landfill leachate -Comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode, Chemosphere. 90 (2013) 1455-1460. doi:10.1016/j.chemosphere.2012.09.006. open in new tab
  21. G. Zhao, Y. Pang, L. Liu, J. Gao, B. Lv, Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode, Journal of Hazardous Materials. 179 (2010) 1078-1083. doi:10.1016/j.jhazmat.2010.03.115. open in new tab
  22. A. Fernandes, M.J. Pacheco, L. Ciríaco, A. Lopes, Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode, Journal of Hazardous Materials. 199- 200 (2012) 82-87. doi:10.1016/j.jhazmat.2011.10.074. open in new tab
  23. A. Cabeza, A. Urtiaga, M.-J. Rivero, I. Ortiz, Ammonium removal from landfill leachate by anodic oxidation, Journal of Hazardous Materials. 144 (2007) 715-719. doi:10.1016/j.jhazmat.2007.01.106. open in new tab
  24. B. Zhou, Z. Yu, Q. Wei, H. Long, Y. Xie, Y. Wang, Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode, Applied Surface Science. 377 (2016) 406-415. doi:10.1016/j.apsusc.2016.03.045. open in new tab
  25. A. Urtiaga, A. Rueda, Á. Anglada, I. Ortiz, Integrated treatment of landfill leachates including electrooxidation at pilot plant scale, Journal of Hazardous Materials. 166 (2009) 1530-1534. doi:10.1016/j.jhazmat.2008.11.037. open in new tab
  26. Á. Anglada, A. Urtiaga, I. Ortiz, D. Mantzavinos, E. Diamadopoulos, Boron-doped diamond anodic treatment of landfill leachate: Evaluation of operating variables and formation of oxidation by-products, Water Research. 45 (2011) 828-838. doi:10.1016/j.watres.2010.09.017. open in new tab
  27. Á. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste- water treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol. 84 (2009) 1747-1755. doi:10.1002/jctb.2214. open in new tab
  28. T. Zhu, Y. Zhang, G. Bu, X. Quan, Y. Liu, Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential, Chemical Engineering Journal. 291 (2016) 184-191. doi:10.1016/j.cej.2016.01.099. open in new tab
  29. T. Li, X. Li, J. Chen, G. Zhang, H. Wang, Treatment of Landfill Leachate by Electrochemical Oxidation and Anaerobic Process, Water Environment Research. 79 (2007) 514-520. doi:10.2175/106143006X115435. open in new tab
  30. S. Qiao, X. Yin, J. Zhou, Application of cathode modified by reduced graphene oxide/polypyrrole to enhance anammox activity, RSC Adv. 6 (2016) 97208-97215. doi:10.1039/C6RA18941E. open in new tab
  31. Z. Liang, J. Liu, Landfill leachate treatment with a novel process: Anaerobic ammonium oxidation (Anammox) combined with soil infiltration system, Journal of Hazardous Materials. 151 (2008) 202-212. doi:10.1016/j.jhazmat.2007.05.068. open in new tab
  32. S. Fudala-Ksiazek, E. Kulbat, A. Luczkiewicz, Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater, Environmental Technology. 0 (2017) 1- 11. doi:10.1080/09593330.2017.1317842. open in new tab
  33. EUR-Lex -31999L0031 -EN -EUR-Lex, (n.d.). http://eur-lex.europa.eu/legal- content/en/TXT/?uri=CELEX%3A31999L0031 (accessed August 22, 2017). open in new tab
  34. S. Fudala-Ksiazek, M. Pierpaoli, A. Luczkiewicz, Fate and significance of phthalates and bisphenol A in liquid by-products generated during municipal solid waste mechanical-biological pre-treatment and disposal, Waste Management. 64 (2017) 28-38. doi:10.1016/j.wasman.2017.03.040. open in new tab
  35. Directive 2008/98/EC on waste (Waste Framework Directive) -Environment -European Commission, (n.d.). http://ec.europa.eu/environment/waste/framework/ (accessed August 22, 2017). open in new tab
  36. R. Bogdanowicz, A. Fabiańska, L. Golunski, M. Sobaszek, M. Gnyba, J. Ryl, K. Darowicki, T. Ossowski, S.D. Janssens, K. Haenen, E.M. Siedlecka, Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes, Diamond and Related Materials. 39 (2013) 82-88. doi:10.1016/j.diamond.2013.08.004. open in new tab
  37. American Public Health Association, American Water Works Association, Water Environment Federation, Standard methods for the examination of water and wastewater, APHA-AWWA-WEF, Washington, D.C., 2005. open in new tab
  38. S.R. Weijers, On BOD tests for the determination of biodegradable COD for calibrating Activated Sludge Model No. 1, Water Science and Technology. 39 (1999) 177-184. doi:10.1016/S0273-1223(99)00077-3. open in new tab
  39. C. Flox, P.-L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, C. Arias, E. Brillas, Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron- doped diamond anode, Applied Catalysis B: Environmental. 75 (2007) 17-28. doi:10.1016/j.apcatb.2007.03.010. open in new tab
  40. A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Phil. Trans. R. Soc. Lond. A. 362 (2004) 2477- 2512. doi:10.1098/rsta.2004.1452. open in new tab
  41. P.W. May, W.J. Ludlow, M. Hannaway, P.J. Heard, J.A. Smith, K.N. Rosser, Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films, Diamond and Related Materials. 17 (2008) 105-117. doi:10.1016/j.diamond.2007.11.005. open in new tab
  42. X.Z. Liao, R.J. Zhang, C.S. Lee, S.T. Lee, Y.W. Lam, The influence of boron doping on the structure and characteristics of diamond thin films, Diamond and Related Materials. 6 (1997) 521-525. doi:10.1016/S0925-9635(96)00640-1. open in new tab
  43. W.L. Wang, M.C. Polo, G. Sánchez, J. Cifre, J. Esteve, Internal stress and strain in heavily boron-doped diamond films grown by microwave plasma and hot filament chemical vapor deposition, Journal of Applied Physics. 80 (1996) 1846-1850. doi:10.1063/1.362996. open in new tab
  44. B.L. Willems, G. Zhang, J. Vanacken, V.V. Moshchalkov, S.D. Janssens, K. Haenen, P. Wagner, Granular superconductivity in metallic and insulating nanocrystalline boron- doped diamond thin films, J. Phys. D: Appl. Phys. 43 (2010) 374019. doi:10.1088/0022- 3727/43/37/374019. open in new tab
  45. Z.V. Živcová, O. Frank, V. Petrák, H. Tarábková, J. Vacík, M. Nesládek, L. Kavan, Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution, Electrochimica Acta. 87 (2013) 518-525. doi:10.1016/j.electacta.2012.09.031. open in new tab
  46. Y.-G. Lu, S. Turner, J. Verbeeck, S.D. Janssens, P. Wagner, K. Haenen, G. Van Tendeloo, Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains, Appl. Phys. Lett. 101 (2012) 041907. doi:10.1063/1.4738885. open in new tab
  47. K.E. Bennet, K.H. Lee, J.N. Kruchowski, S.-Y. Chang, M.P. Marsh, A.A. Van Orsow, A. Paez, F.S. Manciu, Development of Conductive Boron-Doped Diamond Electrode: A microscopic, Spectroscopic, and Voltammetric Study, Materials (Basel). 6 (2013) 5726- 5741. doi:10.3390/ma6125726. open in new tab
  48. P. Ashcheulov, J. Šebera, A. Kovalenko, V. Petrák, F. Fendrych, M. Nesládek, A. Taylor, Z. Vlčková Živcová, O. Frank, L. Kavan, M. Dračínský, P. Hubík, J. Vacík, I. Kraus, I. Kratochvílová, Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects, The European Physical Journal B. 86 (2013). doi:10.1140/epjb/e2013-40528-x. open in new tab
  49. A. Zieliński, R. Bogdanowicz, J. Ryl, L. Burczyk, K. Darowicki, Local impedance imaging of boron-doped polycrystalline diamond thin films, Appl. Phys. Lett. 105 (2014) 131908. doi:10.1063/1.4897346. open in new tab
  50. J. Ryl, R. Bogdanowicz, P. Slepski, M. Sobaszek, K. Darowicki, Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes, J. Electrochem. Soc. 161 (2014) H359-H364. doi:10.1149/2.016406jes. open in new tab
  51. G.R. Salazar-Banda, L.S. Andrade, P.A.P. Nascente, P.S. Pizani, R.C. Rocha-Filho, L.A. Avaca, On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments, Electrochimica Acta. 51 (2006) 4612-4619. doi:10.1016/j.electacta.2005.12.039. open in new tab
  52. A.I. del Río, J. Molina, J. Bonastre, F. Cases, Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions, Journal of Hazardous Materials. 172 (2009) 187-195. doi:10.1016/j.jhazmat.2009.06.147. open in new tab
  53. S.A. Alves, T.C.R. Ferreira, N.S. Sabatini, A.C.A. Trientini, F.L. Migliorini, M.R. Baldan, N.G. Ferreira, M.R.V. Lanza, A comparative study of the electrochemical oxidation of the herbicide tebuthiuron using boron-doped diamond electrodes, Chemosphere. 88 (2012) 155-160. doi:10.1016/j.chemosphere.2012.02.042. open in new tab
  54. M. Panizza, G. Cerisola, Application of diamond electrodes to electrochemical processes, Electrochimica Acta. 51 (2005) 191-199. doi:10.1016/j.electacta.2005.04.023. open in new tab
  55. S. Fierro, K. Abe, C. Christos, Y. Einaga, Influence of Doping Level on the Electrochemical Oxidation of Formic Acid on Boron Doped Diamond Electrodes, J. Electrochem. Soc. 158 (2011) F183-F189. doi:10.1149/2.050112jes. open in new tab
  56. D. Medeiros de Araújo, P. Cañizares, C.A. Martínez-Huitle, M.A. Rodrigo, Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp3/sp2 ratio, Electrochemistry Communications. 47 (2014) 37-40. doi:10.1016/j.elecom.2014.07.017. open in new tab
  57. M. Shestakova, M. Sillanpää, Electrode materials used for electrochemical oxidation of organic compounds in wastewater, Rev Environ Sci Biotechnol. 16 (2017) 223-238. doi:10.1007/s11157-017-9426-1. open in new tab
  58. M. Pirsaheb, E. Azizi, A. Almasi, M. Soltanian, T. Khosravi, M. Ghayebzadeh, K. Sharafi, Evaluating the efficiency of electrochemical process in removing COD and NH4-N from landfill leachate, Desalination and Water Treatment. 57 (2016) 6644-6651. doi:10.1080/19443994.2015.1012560. open in new tab
  59. G. Pérez, J. Saiz, R. Ibañez, A.M. Urtiaga, I. Ortiz, Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates, Water Research. 46 (2012) 2579-2590. doi:10.1016/j.watres.2012.02.015. open in new tab
  60. A. Fernandes, M.J. Pacheco, L. Ciríaco, A. Lopes, Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode, Journal of Hazardous Materials. 199- 200 (2012) 82-87. doi:10.1016/j.jhazmat.2011.10.074. open in new tab
  61. J.-K. Lee, K.-R. Lee, S.-H. Hong, K.-H. Kim, B.-H. Lee, J.-H. Lim, Residual Chlorine Distribution and Disinfection during Electrochemical Removal of Dilute Ammonia from an Aqueous Solution, Journal of Chemical Engineering of Japan. 35 (2002) 285-289. doi:10.1252/jcej.35.285. open in new tab
  62. M. Katayose, K. Yoshida, N. Achiwa, M. Eguchi, Safety of electrolyzed seawater for use in aquaculture, Aquaculture. 264 (2007) 119-129. doi:10.1016/j.aquaculture.2006.08.050. open in new tab
  63. K. Vijayaraghavan, D. Ahmad, T.S. Bin Fadzin, In situ hypochlorous acid generation for the treatment of brackish shrimp aquaculture wastewater, Aquaculture Research. 39 (2008) 449-456. doi:10.1111/j.1365-2109.2007.01895.x. open in new tab
  64. E. Lacasa, J. Llanos, P. Cañizares, M.A. Rodrigo, Electrochemical denitrificacion with chlorides using DSA and BDD anodes, Chemical Engineering Journal. 184 (2012) 66- 71. doi:10.1016/j.cej.2011.12.090. open in new tab
  65. M.C. Granger, G.M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, J. Electrochem. Soc. 146 (1999) 4551-4558. doi:10.1149/1.1392673. open in new tab
  66. A. Pop, F. Manea, C. Radovan, D. Dascalu, N. Vaszilcsin, J. Schoonman, Non- enzymatic electrochemical detection of glycerol on boron-doped diamond electrode, Analyst. 137 (2012) 641-647. doi:10.1039/C2AN15645H. open in new tab
  67. M.C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M.D. Koppang, J.E. Butler, G. Lucazeau, M. Mermoux, J.W. Strojek, G.M. Swain, Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem. 72 (2000) 3793-3804. doi:10.1021/ac0000675. open in new tab
  68. E. Guinea, F. Centellas, E. Brillas, P. Cañizares, C. Sáez, M.A. Rodrigo, Electrocatalytic properties of diamond in the oxidation of a persistant pollutant, Applied Catalysis B: Environmental. 89 (2009) 645-650. doi:10.1016/j.apcatb.2009.01.028. open in new tab
  69. K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-Gamo, Y. Sato, H. Kanda, Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond, Diamond and Related Materials. 7 (1998) 1719-1722. doi:10.1016/S0925-9635(98)00296-9. open in new tab
  70. E. Brillas, M.Á. Baños, M. Skoumal, P.L. Cabot, J.A. Garrido, R.M. Rodríguez, Degradation of the herbicide 2,4-DP by anodic oxidation, electro-Fenton and photoelectro-Fenton using platinum and boron-doped diamond anodes, Chemosphere. 68 (2007) 199-209. doi:10.1016/j.chemosphere.2007.01.038. open in new tab
  71. F.C. Moreira, J. Soler, A. Fonseca, I. Saraiva, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: Evaluation of operational variables, Applied Catalysis B: Environmental. 182 (2016) 161-171. doi:10.1016/j.apcatb.2015.09.014. open in new tab
  72. G.V. Buxton, A.J. Elliot, Rate constant for reaction of hydroxyl radicals with bicarbonate ions, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 27 (1986) 241-243. doi:10.1016/1359- 0197(86)90059-7. open in new tab
  73. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, 1st edition, CRC Press, New York, 1985. open in new tab
  74. J.L. de Morais, P.P. Zamora, Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates, Journal of Hazardous Materials. 123 (2005) 181-186. doi:10.1016/j.jhazmat.2005.03.041. open in new tab
  75. O. Primo, M.J. Rivero, I. Ortiz, Photo-Fenton process as an efficient alternative to the treatment of landfill leachates, Journal of Hazardous Materials. 153 (2008) 834-842. doi:10.1016/j.jhazmat.2007.09.053. open in new tab
  76. T.F.C.V. Silva, A. Fonseca, I. Saraiva, V.J.P. Vilar, R.A.R. Boaventura, Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale, Water Research. 47 (2013) 3543-3557. doi:10.1016/j.watres.2013.04.008. open in new tab
  77. T.F.C.V. Silva, M.E.F. Silva, A.C. Cunha-Queda, A. Fonseca, I. Saraiva, M.A. Sousa, C. Gonçalves, M.F. Alpendurada, R.A.R. Boaventura, V.J.P. Vilar, Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification- denitrification/solar photo-Fenton/biological processes, at a scale close to industrial - Biodegradability enhancement and evolution profile of trace pollutants, Water Research. 47 (2013) 6167-6186. doi:10.1016/j.watres.2013.07.036. open in new tab
  78. N. Kishimoto, E. Sugimura, Feasibility of an electrochemically assisted Fenton method using Fe2 +/HOCl system as an advanced oxidation process, Water Science and Technology. 62 (2010) 2321-2329. doi:10.2166/wst.2010.203. open in new tab
  79. W. P, L. Iw, F. Hh, [Landfill leachate treatment by anaerobic process and electrochemical oxidation]., Huan Jing Ke Xue. 22 (2001) 70-73.
  80. G. Chen, Electrochemical technologies in wastewater treatment, Separation and Purification Technology. 38 (2004) 11-41. doi:10.1016/j.seppur.2003.10.006. open in new tab
Verified by:
Gdańsk University of Technology

seen 257 times

Recommended for you

Meta Tags