Inverse heat transfer problem solution of sounding rocket using moving window optimization - Publication - Bridge of Knowledge

Search

Inverse heat transfer problem solution of sounding rocket using moving window optimization

Abstract

An Inverse Heat Transfer Problem is solved for a sounding rocket module given its geometry and measured temperature profile. The solution is obtained via moving window optimization, a technique for solving inverse dynamics. An analysis is performed to modify the method to avoid oscillatory behavior of the resulting heat flux profile. The method parameters are tuned in relation to characteristic phases of the flight. Results are presented and correlated with measured flight data. Conclusions are drawn for better experiments for measuring heat flux on a sounding rocket skin.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 127 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PLOS ONE no. 14, pages 1 - 24,
ISSN: 1932-6203
Language:
English
Publication year:
2019
Bibliographic description:
Dąbrowski A., Dąbrowski L.: Inverse heat transfer problem solution of sounding rocket using moving window optimization// PLOS ONE. -Vol. 14, iss. 6 (2019), s.1-24
DOI:
Digital Object Identifier (open in new tab) 10.1371/journal.pone.0218600
Bibliography: test
  1. Rumsey CB, Lee DB. Measurements of aerodynamic heat transfer on a 15 degree cone-cylinder. Flare configuration in free flight at Mach numbers upto 4.7. Hampton, VA, USA: NASA; 1961. Available from: http://www.dtic.mil/docs/citations/AD0256078.
  2. Mehta RC. Estimation of aerodynamic heat transfer in free flight at Mach number up to 4.7. Wärme-und Stoffü bertragung. 1986; 20(1):27-31. open in new tab
  3. Kimmel R, Adamczak D, Juliano T, Paull A. HIFiRE-5 Flight Test Preliminary Results. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. January; 2013. p. 1-16. Available from: http://arc.aiaa.org/doi/10.2514/6.2013-377. open in new tab
  4. Tikhonov AN, Arsenin V. Solutions of ill-posed problems. Winston; 1977.
  5. Beck JVJV, Arnold KJ. Parameter estimation in engineering and science. Wiley; 1977. Available from: https://books.google.pl/books/about/Parameter{_}Estimation{_}in{_}Engineering{_}and.html?id={_} qAYgYN87UQC{&}redir{_}esc=y.
  6. Denisov AM. Elements of the theory of inverse problems. De Gruyter; 1999. open in new tab
  7. Hensel E. Inverse theory and applications for engineers. Prentice Hall; 1991.
  8. Beck JVJV, Blackwell B, St Clair CR. Inverse heat conduction: ill-posed problems. Wiley; 1985. Avail- able from: https://books.google.pl/books/about/Inverse{_}Heat{_}Conduction.html?id=-1hzLAb{_}ZL0C {&}redir{_}esc=y. open in new tab
  9. Alifanov OM. Inverse Heat Transfer Problems. International Series in Heat and Mass Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg; 1994. Available from: http://link.springer.com/10.1007/978-3- 642-76436-3. open in new tab
  10. Alifanov OM, Artiukhin EA, Rumiantsev SV. Extreme methods for solving ill-posed problems with appli- cations to inverse heat transfer problems. Begell House; 1995. open in new tab
  11. Ozisik MN, Orlande HRB. Inverse heat transfer: fundamentals and applications. Taylor & Francis; 2000. open in new tab
  12. Woodbury KA. Inverse engineering handbook. CRC Press; 2003. Available from: https://www. crcpress.com/Inverse-Engineering-Handbook/Woodbury/p/book/9780849308611. open in new tab
  13. Mulcahy JM, Browne DJ, Stanton KT, Chang Diaz FR, Cassady LD, Berisford DF, et al. Heat flux esti- mation of a plasma rocket helicon source by solution of the inverse heat conduction problem. Interna- tional Journal of Heat and Mass Transfer. 2009; 52(9-10):2343-2357. https://doi.org/10.1016/j. ijheatmasstransfer.2008.10.031 open in new tab
  14. Li DI, Wells MA. Effect of subsurface thermocouple installation on the discrepancy of the measured thermal history and predicted surface heat flux during a quench operation. Metallurgical and Materials Transactions B. 2005; 36(3):343-354. https://doi.org/10.1007/s11663-005-0064-6 open in new tab
  15. Perakis N, Haidn OJ. Inverse heat transfer method applied to capacitively cooled rocket thrust cham- bers. International Journal of Heat and Mass Transfer. 2019; 131:150-166. https://doi.org/10.1016/j. ijheatmasstransfer.2018.11.048 open in new tab
  16. Callens N, Kinnaird A, Dannenberg K, Fittock M, Inga M, Persson O, et al. REXUS/BEXUS-Rocket and balloon experiments for university students. In: 21st ESA Symposium on European Rocket & Balloon Programmes and Related Research. Thun, Switzerland: European Space Agency; 2013. p. 9-13. Available from: http://spaceflight.esa.int/pac-symposium2013/proceedings.htm.
  17. Grulich M, Koop A, Ludewig P, Gutsmiedl J, Kugele J, Ruck T, et al. SMARD-REXUS-18: Development and verification of an SMA based CubeSat Solar Panel Deployment Mechanism. In: Ouwehand L, edi- tor. 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research 7-12 June 2015. Tromso, Norway: ESA Communications, ESTEC; 2015. p. 8. open in new tab
  18. Davenas A. Solid Rocket Propulsion Technology. Elsevier Science; 1992. open in new tab
  19. Ozisik N. Finite Difference Methods in Heat Transfer, Second Edition. CRC Press; 2017. Available from: https://www.taylorfrancis.com/books/9781315121475. open in new tab
  20. Guo Z, Lu T, Liu B. Inverse heat conduction estimation of inner wall temperature fluctuations under tur- bulent penetration. Journal of Thermal Science. 2017; 26(2):160-165. https://doi.org/10.1007/s11630- 017-0925-8 open in new tab
  21. Felde I. Estimation of Thermal Boundary Conditions by Gradient Based and Genetic Algorythms. Mate- rials Science Forum. 2013; 729:144-149. https://doi.org/10.4028/www.scientific.net/MSF.729.144 open in new tab
  22. Burggraf OR. An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications. Journal of Heat Transfer. 1964; 86(3):373. https://doi.org/10.1115/1.3688700 open in new tab
  23. Stolz G. Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes. Journal of Heat Transfer. 1960; 82(1):20. https://doi.org/10.1115/1.3679871 open in new tab
  24. ASM International Handbook Committee. ASM handbook. ASM International; 1990. Available from: https://www.asminternational.org/news/-/journal{_}content/56/10192/06182G/PUBLICATION. open in new tab
  25. Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 7th ed. Wiley; 2011. Available from: https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass +Transfer{%}2C+7th+Edition-p-9780470501979. open in new tab
  26. ANSYS Inc. ANSYS ® Academic Research Mechanical, Help System, Coupled Field Analysis Guide; 2018. open in new tab
  27. Tesch K, Atherton MA, Karayiannis TG, Collins MW, Edwards P. Determining heat transfer coefficients using evolutionary algorithms. Engineering Optimization. 2009; 41(9):855-870. https://doi.org/10.1080/ 03052150903074239 open in new tab
  28. Krawczyk H, Nykiel M, Jerzy Proficz C. Tryton supercomputer capabilities for analysis of massive data streams. Polish Maritime Research. 2015; 3(87):99-104. https://doi.org/10.1515/pomr-2015-0062 open in new tab
  29. Quental C, Folgado J, Ambrósio J. A window moving inverse dynamics optimization for biomechanics of motion. Multibody System Dynamics. 2016; 38(2):157-171. https://doi.org/10.1007/s11044-016- 9529-4 open in new tab
  30. Nelder JA, Mead R. A Simplex Method for Function Minimization. The Computer Journal. 1965; 7 (4):308-313. https://doi.org/10.1093/comjnl/7.4.308 open in new tab
  31. Oliphant TE. Python for Scientific Computing. Computing in Science & Engineering. 2007; 9(3):10-20. https://doi.org/10.1109/MCSE.2007.58 open in new tab
  32. Tikhonov AN. Inverse problems in heat conduction. Journal of Engineering Physics. 1975; 29(1):816- 820. https://doi.org/10.1007/BF00860616 open in new tab
  33. Dabrowski A, Dabrowski L. Moving window optimization IHTP. Zenodo. 2019 open in new tab
Verified by:
Gdańsk University of Technology

seen 334 times

Recommended for you

Meta Tags