Investigating COVID-19 active pharmaceutical ingredients (APIs) degradation using Peroxydisulfate/FeMnOx binary metal oxide/Ultrasound System
Abstract
Degradation of Favipiravir using a hybrid system of peroxydisulfate, FeMnOx binary metal oxide, and ultrasound irradiation was studied. A novel catalyst was synthesized with deep eutectic solvent (DES). The effects of DES type on catalytic performance was evaluated and the catalysts were characterized using XRD, SEM, BET, XPS, and EDS. DES-based catalysts exhibited higher efficiency due to structure change, surface area enhancement and significantly improved Favipiravir adsorption. The DES-based catalyst exhibited a 30 % increase in surface area and a 20-fold increase in Mn content. Additionally, XRD and XPS analyses suggested the reduction of Fe3+ ions, possibly to Fe3O4. Optimal operational parameters (pH = 10, catalyst dose = 500 mg/L, and rox = 20) provide removal efficiency of 70.1 % after 3 h. The catalyst showed stable activity after three cycles, indicating reusability. This study presents a promising approach for the sustainable degradation of COVID-19 APIs, with implications for the pharmaceutical industry.
Citations
-
2
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (6)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wri.2023.100232
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Water Resources and Industry
no. 31,
ISSN: 2212-3717 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Bagheri A., Fallah A., Karczewski J., Eslami A., Sheikh Asadi A. M., Boczkaj G.: Investigating COVID-19 active pharmaceutical ingredients (APIs) degradation using Peroxydisulfate/FeMnOx binary metal oxide/Ultrasound System// Water Resources and Industry -Vol. 31, (2024), s.100232-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.wri.2023.100232
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 90 times
Recommended for you
Cavitation-Based Processes for Water and Wastewater Treatment
- K. Fedorov,
- E. Cako,
- K. Dinesh
- + 4 authors
Tetracycline degradation for wastewater treatment based on ozone nanobubbles advanced oxidation processes (AOPs) – Focus on nanobubbles formation, degradation kinetics, mechanism and effects of water composition
- P. Koundle,
- N. Nirmalkar,
- M. Momotko
- + 2 authors