Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing - Publication - MOST Wiedzy


Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing


The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann–Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.


  • 1 7


  • 1 6

    Web of Science

  • 1 4


Authors (5)

  • Photo of  Zofia Bałdysz

    Zofia Bałdysz

    • Wojskowa Akademia Techniczna / Wydział Inżynierii Lądowej i Geodezji
  • Photo of dr inż. Grzegorz Nykiel

    Grzegorz Nykiel dr inż.

    • Wojskowa Akademia Techniczna
  • Photo of prof. dr hab. inż. Mariusz Figurski

    Mariusz Figurski prof. dr hab. inż.

    • Wojskowa Akademia Techniczna
  • Photo of  Karolina Szafranek

    Karolina Szafranek

    • Wojskowa Akademia Techniczna / Wydział Inżynierii Lądowej i Geodezji
  • Photo of  Krzysztof Kroszczyński

    Krzysztof Kroszczyński

    • Wojskowa Akademia Techniczna / Wydział Inżynierii Lądowej i Geodezji

Cite as

Full text

download paper
downloaded 26 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY-NC-ND open in new tab



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Acta Geophysica no. 63, edition 4, pages 1103 - 1125,
ISSN: 1895-6572
Publication year:
Bibliographic description:
Bałdysz Z., Nykiel G., Figurski M., Szafranek K., Kroszczyński K.: Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing// Acta Geophysica. -Vol. 63, iss. 4 (2015), s.1103-1125
Digital Object Identifier (open in new tab) 10.1515/acgeo-2015-0033
Bibliography: test
  1. ing the global positioning system, J. Geophys. Res. 97, D14, 15787-15801, DOI: 10.1029/92JD01517. open in new tab
  2. Bock, O., M.-N. Bouin, A. Walpersdorf, J.-P. Lafore, S. Janicot, F. Guichard, and A. Agusti-Panareda (2007), Comparison of ground-based GPS precipitable water vapour to independent observations and numerical weather prediction model reanalyses over Africa, Q. J. Roy. Meteor. Soc. 133, 629, 2011-2027, DOI: 10.1002/qj.185. open in new tab
  3. Bock, O., P. Willis, J. Wang, and C. Mears (2014), A high-quality, homogenized, global, long-term (1993-2008) DORIS precipitable water data set for cli- mate monitoring and model verification, J. Geophys. Res. -Atmos. 119, 12, 7209-7230, DOI: 10.1002/2013JD021124. open in new tab
  4. Bruyninx, C. (2004), The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists, GeoInformatics 7, 5, 32-35.
  5. Byun, S.H., and Y.E. Bar-Server (2009), A new type of troposphere zenith path de- lay product of the international GNSS service, J. Geodesy 83, 3-4, 367-373, DOI: 10.1007/s00190-008-0288-8. open in new tab
  6. COST (2012), Memorandum of understanding for the implementation of a European Concerted Research Action, COST Action ES1206, Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), European Cooperation in Sci- ence and Technology. open in new tab
  7. Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (eds.) (2007), Bernese GPS software version 5.0, User manual, Astronomical Institute, University of Bern, Bern, Switzerland.
  8. Figurski, M., P. Kamiński, and A. Kenyeres (2009), Preliminary results of the com- plete EPN reprocessing computed by the MUT EPN Local Analysis Centre, Bull. Geod. Geomatics 1, 163-174. open in new tab
  9. Goosens, C., and A. Berger (1986), Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century, Ann. Geophys. 4, 4, 385-400.
  10. Guerova, G. (2013), Ground-based GNSS meteorology, Gfg 2 Summer School, 2 July 2013, Potsdam, Germany. open in new tab
  11. Hagemann, S., L. Bengtsson, and G. Gendt (2003), On the determination of atmos- pheric water vapor from GPS measurements, J. Geophys. Res. 108, D21, 4678, DOI: 10.1029/2002JD003235. open in new tab
  12. Held, I.M., and B.J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Climate 19, 21, 5686-5699, DOI: 10.1175/JCLI3990.1. open in new tab
  13. Herring, T.A. (1992), Modeling atmospheric delays in the analysis of space geodetic data. In: J.C. de Munck, and T.A.T. Spoelstra (eds.), Proc. Symp. Refrac- tion of Transatmospheric Signals in Geodesy, 19-22 May 1992, Hague, The Netherlands, 157-164. open in new tab
  14. Hocke, K. (1998), Phase estimation with Lomb-Scargle periodogram method, Ann. Geophys. 16, 3, 356-358.
  15. Jin, S., J.-U. Park, J.-H. Cho, and P.-H. Park (2007), Seasonal variability of GPS- derived zenith tropospheric delay (1994-2006) and climate implications, J. Geophys. Res. 112, D9, D09110, DOI: 10.1029/2006JD007772. open in new tab
  16. Karmeshu, N. (2012), Trend detection in annual temperature and precipitation using Mann Kendall test -A case study to assess climate change on select states in the Northeastern United States, M.Sc. Thesis, University of Pennsyl- vania, Philadelphia, USA.
  17. Kendall, M.G., and A. Stuart (1970), The Advanced Theory of Statistics. Vol. 2: In- terference and Relationship, 3rd ed., Hafner, New York.
  18. Lomb, N.R. (1976), Least-squares frequency analysis of unequally spaced data, As- trophys. Space Sci. 39, 2, 447-462, DOI: 10.1007/BF006483. open in new tab
  19. Mann, H.B. (1945), Nonparametric tests against trend, Econometrica 13, 3, 245-259, DOI: 10.2307/1907187. open in new tab
  20. Marini, J.W. (1972), Correction of satellite tracking data for an arbitrary tropo- spheric profile, Radio Sci. 7, 2, 223-231, DOI: 10.1029/RS007i002p00223. open in new tab
  21. Mavromatis, T., and D. Stathis (2011), Response of the water balance in Greece to temperature and precipitation trends, Theor. Appl. Climatol. 104, 1-2, 13- 24, DOI: 10.1007/s00704-010-0320-9. open in new tab
  22. Niell, A.E. (1996), Global mapping functions for the atmospheric delay at radio wavelengths, J. Geophys. Res. 101, B2, 3227-3246, DOI: 10.1029/ 95JB03048. open in new tab
  23. Nilsson, T., and G. Elgered (2008), Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data, J. Geophys. Res. 113, D19, D19101, DOI: 10.1029/2008JD010110. open in new tab
  24. Ning, T. (2012), GPS meteorology: with focus on climate application, Ph.D. Thesis, Department of Earth and Space Sciences, Chalmers University of Technol- ogy, Göteborg, Sweden.
  25. Pacione, R., B. Pace, and G. Bianco (2014), An homogeneously reprocessed Zenith Total Delay long-term time series over Europe. In: EGU General Assem- bly, 27 April -2 May 2014, Vienna, Austria, id. 2945.
  26. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery (1992), Numerical recipes in Fortran, 2nd ed., Cambridge University Press, Cambridge.
  27. Ross, R.J., and W.P. Elliott (2001), Radiosonde-based northern hemisphere tropo- spheric water vapor trends, J. Climate 14, 7, 1602-1612, DOI: 10.1175/ 1520-0442(2001)014<1602:RBNHTW>2.0.CO;2. open in new tab
  28. Schüler, T. (2001), On ground-based GPS tropospheric delay estimation, Ph.D. The- sis, Universität der Bundeswehr, München, Germany, 364 pp. open in new tab
  29. Söhne, W., M. Figurski, and K. Szafranek (2010), Homogeneous Zenith Total Delay parameter estimation from European permanent GNSS sites, Bull. Geod. Geomatics 69, 1, 11-22.
  30. Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey (2006), Reprocessing of a global GPS network, J. Geophys. Res. 111, B5, B05402, DOI: 10.1029/2005JB003747. open in new tab
  31. Malderen, R., H. Brenot, E. Pottiaux, S. Beirle, C. Hermans, M. de Mazière, T. Wagner, H. de Backer, and C. Bruyninx (2014), A multi-site intercom- parison of integrated water vapour observations for climate change analy- sis, Atmos. Meas. Tech. 7, 8, 2487-2512, DOI: 10.5194/amt-7-2487-2014. open in new tab
  32. Wang, J., and L. Zhang (2009), Climate applications of a global, 2-hourly atmos- pheric precipitable water dataset derived from IGS tropospheric products, J. Geodesy 83, 3-4, 209-217, DOI: 10.1007/s00190-008-0238-5. open in new tab
  33. Yong, W., Y. Binyun, W. Debao, and L. Yanping (2008), Zenith Tropospheric De- lay from GPS monitoring climate change of Chinese Mainland. In: Int. Workshop on Education Technology and Training and on Geoscience and Remote Sensing, 21-22 December 2008, Shanghai, China, Vol. 1, 365-368, DOI: 10.1109/ETTandGRS.2008.43. open in new tab
Verified by:
Gdańsk University of Technology

seen 65 times

Recommended for you

Meta Tags