Magnetism and charge density waves in RNiC2(R=Ce,Pr,Nd) - Publication - Bridge of Knowledge

Search

Magnetism and charge density waves in RNiC2(R=Ce,Pr,Nd)

Abstract

We have compared the magnetic, transport, galvanomagnetic, and specific-heat properties of CeNiC2, PrNiC2, and NdNiC2 to study the interplay between charge density waves (CDW) and magnetism in these compounds. The negative magnetoresistance in NdNiC2 is discussed in terms of the partial destruction of charge density waves and an irreversible phase transition stabilized by the field-induced ferromagnetic transformation is reported. For PrNiC2 we demonstrate that the magnetic field initially weakens the CDW state, due to the Zeeman splitting of conduction bands. However, the Fermi surface nesting is enhanced at a temperature related to the magnetic anomaly.

Citations

  • 3 1

    CrossRef

  • 0

    Web of Science

  • 3 1

    Scopus

Cite as

Full text

download paper
downloaded 42 times
Publication version
Accepted or Published Version
License
Copyright (2017 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW B no. 95, edition 23, pages 1 - 14,
ISSN: 2469-9950
Language:
English
Publication year:
2017
Bibliographic description:
Kolincio K., Roman M., Winiarski M. J., Strychalska-Nowak J., Klimczuk T.: Magnetism and charge density waves in RNiC2(R=Ce,Pr,Nd)// PHYSICAL REVIEW B. -Vol. 95, iss. 23 (2017), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1103/physrevb.95.235156
Bibliography: test
  1. from National Science Centre (Poland), grant number: 720 UMO-2015/19/B/ST3/03127. We also thank to E. Car- 721 nicom, K. Rogacki, Z. Sobczak, K. Górnicka and H. open in new tab
  2. Marciniak for useful advice and fruitful discussions. open in new tab
  3. J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, 726
  4. J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, 727
  5. A. Watenphul, M. v. Zimmermann, E. M. Forgan, and 728 S. M. Hayden, Nature Physics 8, 871 (2012).
  6. E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, 730 open in new tab
  7. E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, 731
  8. Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, 732 Science 343, 393 (2014).
  9. J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. 734 open in new tab
  10. Christensen, M. Hücker, R. Liang, D. A. Bonn, W. N.
  11. Hardy, U. Rütt, M. v. Zimmermann, E. M. Forgan, and 736 S. M. Hayden, Nature Communications 7, 11494 (2016).
  12. E. Fawcett, Rev. Mod. Phys. 60, 209 (1988). open in new tab
  13. V. L. R. Jacques, C. Laulhé, N. Moisan, S. Ravy, and 739 D. Le Bolloc'h, Phys. Rev. Lett. 117, 156401 (2016). open in new tab
  14. C. Y. Young and J. B. Sokoloff, Journal of Physics F: Metal 741 Physics 4, 1304 (1974). open in new tab
  15. C. A. Balseiro, P. Schlottmann, and F. Yndurain, Phys. open in new tab
  16. Rev. B 21, 5267 (1980). open in new tab
  17. T. Tiedje, J. F. Carolan, A. J. Berlinsky, and L. Weiler, 745 open in new tab
  18. Canadian Journal of Physics 53, 1593 (1975). open in new tab
  19. J. Brooks, D. Graf, E. Choi, M. Almeida, J. Dias, R. Hen- 747 riques, and M. Matos, Current Applied Physics 6, 913 748 (2006). open in new tab
  20. J.-F. Wang, M. Yang, L. Li, M. Sasaki, A. Ohnishi, M. Ki- 750 taura, K.-S. Kim, and H.-J. Kim, Phys. Rev. B 89, 035137 751 (2014). open in new tab
  21. D. Andres, M. V. Kartsovnik, W. Biberacher, 753 open in new tab
  22. K. Neumaier, I. Sheikin, H. Müller, and N. D.
  23. Kushch, Low Temperature Physics 37, 762 (2011), 755
  24. http://dx.doi.org/10.1063/1.3670031. open in new tab
  25. D. Zanchi, A. Bjeliš, and G. Montambaux, Phys. Rev. B 757 53, 1240 (1996). open in new tab
  26. D. Graf, E. S. Choi, J. S. Brooks, M. Matos, R. T. Hen- 759 riques, and M. Almeida, Phys. Rev. Lett. 93, 076406 760 (2004). open in new tab
  27. L. E. Winter, J. S. Brooks, P. Schlottmann, M. Almeida, 762 open in new tab
  28. S. Benjamin, and C. Bourbonnais, EPL (Europhysics Let- 763 ters) 103, 37008 (2013).
  29. K. Murata, Y. Fukumoto, K. Yokogawa, W. Kang, 765 open in new tab
  30. R. Takaoka, R. Tada, H. Hirayama, J. S. Brooks, D. Graf, 766
  31. H. Yoshino, T. Sasaki, and R. Kato, Physica B: Condensed 767
  32. Matter 460, 241 (2015), special Issue on Electronic Crys- 768 tals (ECRYS-2014). open in new tab
  33. P. C. Lalngilneia, A. Thamizhavel, S. Ramakrishnan, and 770 open in new tab
  34. D. Pal, Journal of Physics: Conference Series 592, 012094 771 (2015).
  35. S. van Smaalen, M. Shaz, L. Palatinus, P. Daniels, F. Galli, 773 open in new tab
  36. G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. B 69, 774 014103 (2004).
  37. F. Galli, S. Ramakrishnan, T. Taniguchi, G. J. Nieuwen- 776 huys, J. A. Mydosh, S. Geupel, J. Lüdecke, and S. van 777 open in new tab
  38. Smaalen, Phys. Rev. Lett. 85, 158 (2000).
  39. F. Galli, R. Feyerherm, R. W. A. Hendrikx, E. Dudzik, 779 open in new tab
  40. G. J. Nieuwenhuys, S. Ramakrishnan, S. D. Brown, S. van 780
  41. Smaalen, and J. A. Mydosh, Journal of Physics: Con- 781 densed Matter 14, 5067 (2002).
  42. Z. Hossain, M. Schmidt, W. Schnelle, H. S. Jeevan, 783 open in new tab
  43. C. Geibel, S. Ramakrishnan, J. A. Mydosh, and Y. Grin, 784
  44. Phys. Rev. B 71, 060406 (2005). open in new tab
  45. M. Leroux, P. Rodière, and C. Opagiste, Journal of Su- 786 perconductivity and Novel Magnetism 26, 1669 (2013). open in new tab
  46. Y. Singh, D. Pal, and S. Ramakrishnan, Phys. Rev. B 70, 788 064403 (2004). open in new tab
  47. N. S. Sangeetha, A. Thamizhavel, C. V. Tomy, S. Basu, 790 open in new tab
  48. A. M. Awasthi, S. Ramakrishnan, and D. Pal, Phys. Rev. 791 B 86, 024524 (2012).
  49. Y. K. Kuo, K. M. Sivakumar, T. H. Su, and C. S. Lue, 793 open in new tab
  50. Phys. Rev. B 74, 045115 (2006). open in new tab
  51. J. N. Kim, C. Lee, and J.-H. Shim, New Journal of Physics 795 15, 123018 (2013). open in new tab
  52. G. Prathiba, I. Kim, S. Shin, J. Strychalska, T. Klimczuk, 797 and T. Park, Scientific Reports 6, 26530 (2016). open in new tab
  53. M. Murase, A. Tobo, H. Onodera, Y. Hirano, T. Hosaka, 799 open in new tab
  54. S. Shimomura, and N. Wakabayashi, Journal of the Phys- 800 ical Society of Japan 73, 2790 (2004).
  55. N. Yamamoto, R. Kondo, H. Maeda, and Y. Nogami, 802 Journal of the Physical Society of Japan 82, 123701 (2013). open in new tab
  56. J. Laverock, T. D. Haynes, C. Utfeld, and S. B. Dugdale, 804
  57. Phys. Rev. B 80, 125111 (2009). open in new tab
  58. D. Ahmad, B. H. Min, G. I. Min, S.-I. Kimura, J. Seo, and 806 Y. S. Kwon, Physica Status Solidi (B) 252, 2662 (2015). open in new tab
  59. S. Shimomura, C. Hayashi, N. Hanasaki, K. Ohnuma, Physical Review B 93, 165108 (2016). open in new tab
  60. A. Wölfel, L. Li, S. Shimomura, H. Onodera, and S. van 811 open in new tab
  61. Smaalen, Physical Review B 82, 054120 (2010).
  62. W. Lee, H. Zeng, Y. Yao, and Y. Chen, Physica C: Su- 813 perconductivity 266, 138 (1996). open in new tab
  63. V. K. Pecharsky, L. L. Miller, and K. A. Gschneidner, 815
  64. Phys. Rev. B 58, 497 (1998). open in new tab
  65. B. Wiendlocha, R. Szczȩśniak, A. P. Durajski, and 817 M. Muras, Physical Review B 94, 134517 (2016). open in new tab
  66. W. Schäfer, W. Kockelmann, G. Will, J. Yakinthos, and 819 P. Kotsanidis, Journal of Alloys and Compounds 250, 565 820 (1997). open in new tab
  67. P. Kotsanidis, J. Yakinthos, and E. Gamari-Seale, Journal 822 of the Less Common Metals 152, 287 (1989). open in new tab
  68. A. Bhattacharyya, D. T. Adroja, A. M. Strydom, A. D. open in new tab
  69. Hillier, J. W. Taylor, A. Thamizhavel, S. K. Dhar, W. A. (2014).
  70. J. Yakinthos, P. Kotsanidis, W. Schäfer, and G. Will, 828 Journal of Magnetism and Magnetic Materials 89, 299 829 (1990). open in new tab
  71. N. Hanasaki, K. Mikami, S. Torigoe, Y. Nogami, S. Shi- 831 momura, M. Kosaka, and H. Onodera, Journal of Physics: 832 Conference Series 320, 012072 (2011). open in new tab
  72. N. Uchida, H. Onodera, M. Ohashi, Y. Yamaguchi, 834 open in new tab
  73. N. Sato, and S. Funahashi, Journal of Magnetism and 835 Magnetic Materials 145, L16 (1995).
  74. S. Matsuo, H. Onodera, M. Kosaka, H. Kobayashi, 837 open in new tab
  75. M. Ohashi, H. Yamauchi, and Y. Yamaguchi, Journal of 838 Magnetism and Magnetic Materials 161, 255 (1996).
  76. H. Onodera, Y. Koshikawa, M. Kosaka, M. Ohashi, H. Ya- 840
  77. mauchi, and Y. Yamaguchi, Journal of Magnetism and 841 Magnetic Materials 182, 161 (1998).
  78. T. Sakai, G.-y. Adachi, and J. Shiokawa, Materials Re- 843 search Bulletin 15, 1001 (1980). open in new tab
  79. J. Rodríguez-Carvajal, Physica B: Condensed Matter 192, 845 55 (1993).
  80. K. Motoya, K. Nakaguchi, N. Kayama, K. Inari, 847 open in new tab
  81. J. Akimitsu, K. Izawa, and T. Fujita, Journal 848 of the Physical Society of Japan 66, 1124 (1997),
  82. http://journals.jps.jp/doi/pdf/10.1143/JPSJ.66.1124. 850 open in new tab
  83. W. Schäfer, G. Will, J. Yakinthos, and P. Kotsanidis, 851 Journal of Alloys and Compounds 180, 251 (1992). open in new tab
  84. J. Jensen and A. R. Mackintosh, Rare earth magnetism: 853 structures and excitations (Clarendon Press, 1991).
  85. K. K. Kolincio, K. Górnicka, M. J. Winiarski, 855 open in new tab
  86. J. Strychalska-Nowak, and T. Klimczuk, Phys. Rev. B 856 94, 195149 (2016).
  87. W. T. Hsieh, W.-H. Li, K. C. Lee, J. W. Lynn, J. H. Shieh, 858 open in new tab
  88. and H. C. Ku, Journal of Applied Physics 76, 7124 (1994).
  89. S. Akamaru, Y. Isikawa, J. Sakurai, K. Maezawa, and 860
  90. H. Harima, Journal of the Physical Society of Japan 70, 861 2049 (2001).
  91. J. L. Snyman and A. M. Strydom, Journal of Applied 863 Physics 113, 17E135 (2013). open in new tab
  92. A. Gil, A. Szytu la, Z. Tomkowicz, K. Wojciechowski, and 865 A. Zygmunt, Journal of Magnetism and Magnetic Materi- 866 als 129, 271 (1994). open in new tab
  93. K. Kolincio, O. Pérez, S. Hébert, P. Fertey, and A. Pau- 868 trat, Phys. Rev. B 93, 235126 (2016). open in new tab
  94. H. Lei, K. Wang, and C. Petrovic, Journal of Physics: 870 Condensed Matter 29, 075602 (2017). open in new tab
  95. K. Usami, Journal of the Physical Society of Japan 45, 466 872 (1978), http://dx.doi.org/10.1143/JPSJ.45.466. open in new tab
  96. C. Mazumdar, A. K. Nigam, R. Nagarajan, L. C. Gupta, 874 open in new tab
  97. G. Chandra, B. D. Padalia, C. Godart, and R. Vija- 875 yaraghaven, Journal of Applied Physics 81, 5781 (1997), 876
  98. http://dx.doi.org/10.1063/1.364666. open in new tab
  99. H. YAMADA and S. TAKADA, Progress of theoretical 878 physics 48, 1828 (1972). open in new tab
  100. S. Shimomura, C. Hayashi, G. Asaka, N. Wakabayashi, 880 open in new tab
  101. M. Mizumaki, and H. Onodera, Physical Review Letters 881 102, 076404 (2009).
  102. N. Hanasaki, Y. Nogami, M. Kakinuma, S. Shimomura, 883 open in new tab
  103. M. Kosaka, and H. Onodera, Physical Review B 85, 884 092402 (2012).
  104. W. Dieterich and P. Fulde, Zeitschrift für Physik A 886 Hadrons and nuclei 265, 239 (1973). open in new tab
  105. X. Xu, A. F. Bangura, J. G. Analytis, J. D. Fletcher, 888 open in new tab
  106. M. M. J. French, N. Shannon, J. He, S. Zhang, D. Man- 889 drus, R. Jin, and N. E. Hussey, Phys. Rev. Lett. 102, 890 206602 (2009).
  107. D. Graf, J. S. Brooks, E. S. Choi, S. Uji, J. C. Dias, 892 open in new tab
  108. M. Almeida, and M. Matos, Phys. Rev. B 69, 125113 893 (2004).
  109. M. Matos, G. Bonfait, R. T. Henriques, and M. Almeida, 895 open in new tab
  110. Phys. Rev. B 54, 15307 (1996). open in new tab
  111. G. Bonfait, M. J. Matos, R. T. Henriques, and 897 M. Almeida, Physica B: Condensed Matter 211, 297 898 (1995). open in new tab
  112. G. Bonfait, E. B. Lopes, M. J. Matos, R. T. Henriques, and 900
  113. M. Almeida, Solid State Communications 80, 391 (1991). open in new tab
  114. D. Graf, E. Choi, J. Brooks, J. Dias, R. Henriques, 902 open in new tab
  115. M. Almeida, M. Matos, and D. Rickel, Synthetic Metals 903 153, 361 (2005).
  116. K. Monchi, M. Poirier, C. Bourbonnais, M. Matos, and 905 R. Henriques, Synthetic Metals 103, 2228 (1999). open in new tab
  117. E. Wang, M. Greenblatt, I. E.-I. Rachidi, E. Canadell, M.- open in new tab
  118. H. Whangbo, and S. Vadlamannati, Phys. Rev. B 39, 908 12969 (1989).
  119. C. Schlenker, J. Dumas, C. Escribe-filippini, open in new tab
  120. H. Guyot, J. Marcus, and G. Fourcaudot, 911
  121. Philosophical Magazine Part B 52, 643 (1985), open in new tab
  122. http://dx.doi.org/10.1080/13642818508240627. open in new tab
  123. J. H. Kim, J.-S. Rhyee, and Y. S. Kwon, Phys. Rev. B 86, 914 235101 (2012). open in new tab
  124. L. Berger and G. Bergmann, "The Hall Effect of Ferro- 916 magnets," in The Hall Effect and Its Applications, edited 917 by C. L. Chien and C. R. Westgate (Springer US, Boston, 918 open in new tab
  125. MA, 1980) pp. 55-76. open in new tab
  126. J. S. Higgins, S. R. Shinde, S. B. Ogale, T. Venkatesan, 920 and R. L. Greene, Phys. Rev. B 69, 073201 (2004). open in new tab
  127. Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, 922 open in new tab
  128. M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, 923 and M. Grundmann, Phys. Rev. B 73, 205342 (2006).
  129. A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, H. Ohno, and 925 H. Munekata, Phys. Rev. B 59, 5826 (1999). open in new tab
  130. Y. Shiomi, Y. Onose, and Y. Tokura, Phys. Rev. B 79, 927 100404 (2009). open in new tab
  131. K. Rogacki, Private communication. open in new tab
  132. M. J. Winiarski and T. Klimczuk, Journal of Solid State 930 Chemistry 245, 10 (2017). open in new tab
  133. M. Tachibana, Y. Kohama, T. Atake, and E. Takayama- 932 open in new tab
  134. Muromachi, Journal of Applied Physics 101, 09D502 933 (2007), http://dx.doi.org/10.1063/1.2667992. open in new tab
  135. T. Mori, T. Takimoto, A. Leithe-Jasper, R. Cardoso-Gil, open in new tab
  136. S. Y. Wu, Y. C. Chang, K. C. Lee, and W.-H. Li, Journal 938 of Applied Physics 83, 7318 (1998). open in new tab
Verified by:
Gdańsk University of Technology

seen 160 times

Recommended for you

Meta Tags