Meso‐scale analyses of size effect in brittle materials using DEM - Publication - Bridge of Knowledge

Search

Meso‐scale analyses of size effect in brittle materials using DEM

Abstract

The paper describes numerical meso-scale results of a size effect on strength, brittleness and fracture in brittle materials like concrete. The discrete element method (DEM) was used to simulate the size effect during quasi-static splitting tension with the experimental-based meso-structure. The two-dimensional (2D) calculations were carried out on concrete cylindrical specimens with two diameters wherein two different failure modes occurred (quasi-brittle and very brittle with the snap-back instability). Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and macro-voids, based on x-ray micro-CT-images of the real concrete meso-structure. Attention was paid to the effect of the different specimen diameter on both the strength, brittleness and fracture pattern. Each internal energy component was analyzed in the fracture process zone and beyond it, and compared for the different post-peak behaviour of concrete. The evolutions of the number of broken contacts, coordination number, crack displace - ments and normal contact forces were also shown. Of specific interest was the fracture initiation and formation of two dif - ferent failure modes. Next, the 2D DEM results of a size effect for 4 different specimen diameters were directly compared with corresponding experiments from the research literature. The experimental size effect was realistically reproduced in numerical calculations, i.e. the concrete strength and ductility decreased with increasing concrete specimen diameter. The calculated decreasing strength approached an asymptote with increasing cylindrical specimen diameter within the considered specimen size range.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 3 7

    Scopus

Cite as

Full text

download paper
downloaded 62 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
GRANULAR MATTER no. 21, edition 9, pages 1 - 19,
ISSN: 1434-5021
Language:
English
Publication year:
2019
Bibliographic description:
Suchorzewski J., Tejchman-Konarzewski A., Nitka M., Bobiński J.: Meso‐scale analyses of size effect in brittle materials using DEM// GRANULAR MATTER. -Vol. 21, iss. 9 (2019), s.1-19
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10035-018-0862-6
Bibliography: test
  1. Bažant, Z.P.: Size effect in blunt fracture concrete, rock, metal. J. Eng. Mech. ASCE 110, 518-535 (1984) open in new tab
  2. Carpinteri, A.: Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int. J. Solids Struct. 25(4), 407-429 (1989) open in new tab
  3. Bažant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasi-Brittle Materials. CRC Press, Boca Raton (1989) open in new tab
  4. Korol, E., Tejchman, J., Mróz, Z.: FE analysis of size effects in reinforced concrete beams without shear reinforcement based on stochastic elasto-plasticity with non-local softening. Finite Elem. Anal. Des. 1, 25-41 (2014)
  5. Syroka-Korol, E., Tejchman, J.: Experimental investigations of size effect in reinforced concrete beams failing by shear. Eng. Struct. 58, 63-78 (2014) open in new tab
  6. Korol, E., Tejchman, J., Mróz, Z.: The effect of correlation length and material coefficient of variation on coupled ener- getic-statistical size effect in concrete beams under bending. Eng. Struct. 103, 239-259 (2015)
  7. Duan, K., Hu, Z.: Specimen boundary induced size effect on quasi-brittle fracture. Strength Fract. Complex. 2(2), 47-68 (2004)
  8. Bažant, Z.P., Pang, S.D., Vorechovsky, M., Novak, D.: Energetic- statistical size effect simulated by S6FEM with stratified sam- pling and crack band model. Int. J. Numer. Methods Eng. 71(11), 1297-1320 (2007) open in new tab
  9. Tanabe, T., Itoh, A., Ueda, N.: Snapback failure analysis for large scale concrete structures and its application to shear capacity study of columns. J. Adv. Concr. Technol. 2(3), 275-288 (2004) open in new tab
  10. Biolzi, L., Cangiano, S., Tognon, G., Carpintieri, A.: Snap-back softening instability in high strength concrete beams. Mater. Struct. 22, 429-436 (1989) open in new tab
  11. Syroka-Korol, E., Tejchman, J., Mróz, Z.: FE calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Eng. Struct. 48, 205-219 (2013) open in new tab
  12. Kani, G.N.J.: How safe are our large concrete beams? ACI J. Proc. 64(3), 128-142 (1967) open in new tab
  13. Weibull, W.: A statistical distribution function of wide applicabil- ity. J. Appl. Mech. 18(9), 293-297 (1951) open in new tab
  14. Suchorzewski, J., Tejchman, J., Nitka, M.: Experimental and numerical investigations of concrete behaviour at meso-level dur- ing quasi-static splitting tension. Theoret. Appl. Fract. Mech. 96, 720-739 (2018) open in new tab
  15. Skarżyński, L., Nitka, M., Tejchman, J.: Modelling of concrete fracture at aggregate level using FEM and DEM based on x-ray µCT images of internal structure. Eng. Fract. Mech. 10(147), 13-35 (2015) open in new tab
  16. Nitka, M., Tejchman, J.: A three-dimensional meso-scale approach to concrete fracture based on combined DEM with x-ray μCT images. Cem. Concr. Res. 107, 11-29 (2018) open in new tab
  17. Suchorzewski, J., Tejchman, J., Nitka, M.: DEM simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int. J. Damage Mech. 27(4), 578-607 (2018) open in new tab
  18. Suchorzewski, J., Korol, E., Tejchman, J., Mróz, Z.: Experimen- tal study of shear strength and failure mechanisms in RC beams scaled along height or length. Eng. Struct. 157, 203-223 (2018) open in new tab
  19. Skarzynski, L., Tejchman, J.: Experimental investigations of fracture process in concrete by means of x-ray micro-computed tomography. Strain 52, 26-45 (2016) open in new tab
  20. Hentz, S., Daudeville, L., Donze, F.: Identification and validation of a discrete element model for concrete. J. Eng. Mech. ASCE 130(6), 709-719 (2004) open in new tab
  21. Dupray, F., Malecot, Y., Daudeville, L., et al.: Mesoscopic model for the behaviour of concrete under high confinement. Int. J. Numer. Anal. Method Geomech. 33, 1407-1423 (2009) open in new tab
  22. Groh, U., Konietzky, H., Walter, K., et al.: Damage simulation of brittle heterogeneous materials at the grain size level. Theoret. Appl. Fract. Mech. 55, 31-38 (2011) open in new tab
  23. Chen, W., Konietzky, H.: Simulation of heterogeneity, creep, damage and lifetime for loaded brittle rocks. Tectonophysics 633, 164-175 (2014) open in new tab
  24. Poinard, C., Piotrowska, E., Malecot, Y., Daudeville, L.: Lan- dis, E: Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. Eur. J. Environ. Civil Eng. 16(S1), 115-136 (2012) open in new tab
  25. Ruiz, G., Ortiz, M., Pandolfi, A.: Three-dimensional finite-ele- ment simulation of the dynamic Brazilian tests on concrete cylin- ders. Int. J. Numer. Method Eng. 48, 963-994 (2000) open in new tab
  26. Ferrara, L., Gettu, R.: Size effect in splitting tests on plain and steel fiber-reinforced concrete: a non-local damage analysis. In: Proceed- ings of 4th International Conference on Fracture Mechanics of Con- crete and Concrete Structures, Cachan, France, pp. 677-684 (2001)
  27. Zhu, W.C., Tang, C.A.: Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 43, 236-252 (2006) open in new tab
  28. Mahabadi, O.K., Cottrell, B.E., Grasselli, G.: An example of real- istic modelling of rock dynamics problems: FEM/DEM simulation of dynamic Brazilian test on Barre granite. Rock Mech. Rock Eng. 43, 707-716 (2010) open in new tab
  29. Saksala, T., Hokka, M., Kuokkala, V.T., Makinen, J.: Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int. J. Rock Mech. Min. Sci. 59, 128-138 (2013) open in new tab
  30. Benkemoun, N., Poullain, Ph, Al Khazraji, H., Choinska, M., Khelidj, A.: Meso-scale investigation of failure in the tensile splitting test: size effect and fracture energy analysis. Eng. Fract. Mech. 168, 242-259 (2016) open in new tab
  31. Carmona, H.A., Kun, F., Andrade Jr., J.S., Herrmann, H.J.: Com- puter simulation of fatigue under diametrical compression. Phys. Rev. E 75, 046115 (2007) open in new tab
  32. Murali, K., Deb, A.: Effect of meso-structure on strength and size effect in concrete under tension. Int. J. Numer. Anal. Methods Geomech. 42, 181-207 (2018) open in new tab
  33. Al-Khazraji, H., Benkemoun, N., Choinska, M., Khelidj, A.: Meso-scale analysis of the aggregate size influence on the mechanical properties of heterogeneous materials using the Bra- zilian splitting test. Energy Procedia 139, 266-272 (2017)
  34. Carmona, S., Gettu, R., Aguado, A.: Study of the post-peak behav- iour of concrete in the splitting-tension test, Fracture Mechanics of Concrete Structures. In: Proceedings FRAMCOS-3, Aedificatio Publishers, D-79104 Freiburg, pp. 111-120 (1998) open in new tab
  35. Torrent, R.J.: A general relation between tensile strength and specimen geometry for concrete-like materials. Mater. Struct. 10, 187-196 (1977) open in new tab
  36. Hasegawa, T., Shioya, T., Okada, T.: Size effect on splitting tensile strength of concrete. In: Proceedings of 7th Conference, Japan Institute, pp. 309-312 (1985)
  37. Bažant, Z., Kazemi, M.T., Hasegawa, T., Mazars, J.: Size effect in brazilian split-cylinder tests: measurements and fructure analysis. ACI Mater. J. 88(3), 325-332 (1991) open in new tab
  38. Kadlecek Sr., V., Modry, S., Kadlecek Jr., V.: Size effect of test specimens on tensile splitting strength of concrete: general rela- tion. Mater. Struct. 35, 28-34 (2002)
  39. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Company, New York (1977) open in new tab
  40. Rocco, C., Guine, G.V., Planas, J., Elices, M.: Review of the splitting-test standards from a fracture mechanics point of view. Cem. Concr. Res. 31, 73-82 (2001) open in new tab
  41. Wei, X.X., Chau, K.T.: Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test. Int. J. Solids Struct. 50(14), 2395-2406 (2013) open in new tab
  42. Kuorkoulis, S.K., Markides, C.F., Chatzistergos, P.E.: The standarized Brazilian disc test as a contact problem. Int. J. Rock Mech. Min. Sci. 57, 132-141 (2013) open in new tab
  43. Kuorkoulis, S.K., Markides, C.F., Bakalis, G.: Smooth elastic con- tact of cylinders be caustics: the contact length in the Brazilian disc test. Arch. Mech. 65(4), 313-338 (2013)
  44. García, V.J., Márquez, C.O., Zúñiga-Suárez, A.R., Zuñiga-Tor- res, B.C., Villalta-Granda, L.J.: Brazilian test of concrete speci- mens subjected to different loading geometries: review and new insights. Int. J. Concr. Struct. Mater. 11(2), 343-363 (2017) open in new tab
  45. Kozicki, J., Donze, F.V.: A new open-source software developer for numerical simulations using discrete modeling methods. Com- put. Methods Appl. Mech. Eng. 197, 4429-4443 (2008) open in new tab
  46. Šmilauer, V., Chareyre, B.: Yade DEM Formulation. Manual, 2011 open in new tab
  47. Donze, F.V., Magnier, S.A., Daudeville, L., et al.: Numerical study of compressive behaviour of concrete at high strain rates. J. Eng. Mech. 122(80), 1154-1163 (1999) open in new tab
  48. Nitka, M., Tejchman, J.: Modelling of concrete behaviour in uni- axial compression and tension with DEM. Granul. Matter 17(1), 145-164 (2015) open in new tab
  49. Widulinski, L., Tejchman, J., Kozicki, J., Lesniewska, D.: Dis- crete simulations of shear zone patterning in sand in earth pres- sure problems of a retaining wall. Int. J. Solids Struct. 48(7-8), 1191-1209 (2011) open in new tab
  50. Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Műhlhaus, H.-B.: Discrete modelling results of a direct shear test for granular mate- rials versus FE results. Granul. Matter 15(5), 607-627 (2013) open in new tab
  51. Kozicki, J., Tejchman, J., Műhlhaus, H.-B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Num. Anal. Methods Geom. 38, 1923-1952 (2014) open in new tab
  52. Kozicki, J., Tejchman, J.: Relationship between vortex structures and shear localization in 3D granular specimens based on com- bined DEM and Helmholtz-Hodge decomposition. Granul. Matter 20(48), 1-24 (2018) open in new tab
  53. Ergenzinger, C., Seifried, R., Eberhard, P.A.: Discrete element model to describe failure of strong rock in uniaxial compression. Granul. Matter 12(4), 341-364 (2011) open in new tab
  54. Cundall, P.A., Hart, R.D.: Numerical modelling of discontinua. Eng. Comput. 9(2), 101-113 (1992) open in new tab
  55. Xiao, J., Wengui, L., Zhihui, S., et al.: Properties of interfacial transition zones in recycled aggregate concrete tested by nanoin- dentation. Cem. Concr. Compos. 37, 276-292 (2013) open in new tab
  56. Deng, X., Dave, R.N.: Properties of force networks in jammed granular media. Granul. Matter 19(27), 1-10 (2017) open in new tab
  57. Kahagalage, S., Tordesillas, A., Nitka, M., Tejchman, J.: Of cuts and cracks: data analytics on constrained graphs for early pre- diction of failure in cementitious materials. In: Proc. Int. Conf. Powders and Grains, 2017, EPJ Web of Conferences 140, 08012 (2017). https ://doi.org/10.1051/epjco nf/20171 40080 12 open in new tab
  58. Tejchman, J., Bobinski, J.: In: Wu, W., Borja, R.I. (eds.) Continu- ous and discontinuous modelling of fracture in concrete using FEM. Springer, Berlin (2013) open in new tab
Verified by:
Gdańsk University of Technology

seen 191 times

Recommended for you

Meta Tags