Method of sacrificial anode dual transistor-driving in stray current field - Publication - Bridge of Knowledge

Search

Method of sacrificial anode dual transistor-driving in stray current field

Abstract

In order to control a magnesium anode in a stray current interference field, a dual transistor driving system has been proposed. It consisted of a combination of PNP and NPN transistors. Dual transistor driven system and direct anode to cathode connection were electrochemically tested in 3% NaCl solution. The dual transistor driven system increased the anode efficiency and reduced hydrogen evolution and the risk of embrittlement. Anode susceptibility to the cathodic and anodic stray current interference was reduced.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 53 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CORROSION SCIENCE no. 98, pages 605 - 609,
ISSN: 0010-938X
Language:
English
Publication year:
2015
Bibliographic description:
Narożny M., Żakowski K., Darowicki K.: Method of sacrificial anode dual transistor-driving in stray current field// CORROSION SCIENCE. -Vol. 98, (2015), s.605-609
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.corsci.2015.06.006
Bibliography: test
  1. S. Szabo, I. Bakos, Cathodic protection with sacrificial anodes, Corros. Rev. 24 (2006) 231-280. open in new tab
  2. K. Zakowski, Studying the effectiveness of a modernized cathodic protec- tion system for an offshore platform, Anti-Corros. Methods Mater. 58 (2011) 167-172. open in new tab
  3. European Standard EN 12473, General Principles of Cathodic Protection in Sea Water, European Committee for Standardization, 2000. open in new tab
  4. K. Darowicki, K. Zakowski, A new time-frequency detection method of stray current field interference on metal structures, Corros. Sci. 46 (2004) 1061-1070. open in new tab
  5. K. Zakowski, K. Darowicki, Methods of evaluation of the corrosion hazard caused by stray currents to metal structures containing aggressive media, Pol. J. Environ. Stud. 9 (2000) 237-241.
  6. K. Zakowski, K. Darowicki, Potential changes in an electric field and electrolytic corrosion, Anti-Corros. Methods Mater. 50 (2003) 25-33. open in new tab
  7. A. Wills, Potential limited CP design for susceptible materials, in: Offshore Cathodic Protection Conference London, London, 2013.
  8. K. Yoshino, C.J. McMahon, The cooperative relation between temper embrit- tlement and hydrogen embrittlement in a high strength steel, Metall. Trans. 5 (1974) 363-370. open in new tab
  9. Wang Maoqiu, Eiji Akiyama, Kaneaki Tsuzaki, Determination of the crit- ical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation, Corros. Sci. 48 (2006) 2189-2202.
  10. D. Hardie, E.A. Charles, A.H. Lopez, Hydrogen embrittlement of high strength pipeline steels, Corros. Sci. 12 (2006) 4378-4385. open in new tab
  11. R.A. Oriani, Hydrogen embrittlement of steels, Annu. Rev. Mater. Sci. 8 (1978) 327-357. open in new tab
  12. D. Figueroa, M.J. Robinson, The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels, Corros. Sci. 50 (2008) 1066-1079. open in new tab
  13. H.A. Robinson, Magnesium anodes for the cathodic protection of underground structures, Corrosion 2 (1946) (1946) 199-218. open in new tab
  14. O. Osborn, H.A. Robinson, Performance of magnesium galvanic anodes in under- ground service, Corrosion 8 (1952) 114-129. open in new tab
  15. J.A. Juárez-Islas, J. Genesca, R. Pérez, Improving the efficiency of magnesium sacrificial anodes, JOM -J. Miner. Met. Mater. Soc. 45 (1993) 42-44. open in new tab
  16. L. Feng, A. Yan, Y. Meng, J. Hou, Investigation on corrosion of yttrium-doped magnesium-based sacrificial anode in ground grid protection, J Rare Earths 28 (2010) 389-392. open in new tab
  17. T.J. Lennox Jr., M.H. Peterson, Stray current corrosion of steel, Nav. Eng. J. 88 (1976) 45-53. open in new tab
  18. L.I. Freiman, Stray-current corrosion criteria for underground steel pipelines, Prot. Met. 39 (2003) 172-176. open in new tab
  19. C. Xu, L. Xiaogang, D. Cuiwei, L. Ping, Crevice corrosion behavior of the steel x70 under cathodic polarization, Acta Metall. Sin. 44 (2008) 1431-1438.
  20. E.L. Koehler, The mechanism of cathodic disbondment of protective organic coatings -aqueous displacement at elevated pH, Corros. Sci. 40 (1984) 5-8. open in new tab
  21. T. Kamimura, H. Kishikawa, Mechanism of cathodic disbonding of three-layer polyethylene-coated steel pipe, Corros. Sci. 54 (1998) 979-987. open in new tab
  22. M. Narozny, K. Zakowski, K. Darowicki, Method of sacrificial anode transistor- driving in cathodic protection system, Corros. Sci. 88 (2014) 275-279. open in new tab
Verified by:
Gdańsk University of Technology

seen 90 times

Recommended for you

Meta Tags