Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
Abstract
Let M be a smooth closed simply-connected 4-dimensional manifold, f be a smooth self-map of M with fast grow of Lefschetz numbers and r be a product of different primes. The authors calculate the invariant equal to the minimal number of r-periodic points in the smooth homotopy class of f.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 45 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3934/proc.2011.2011.523
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
pages 523 - 532,
ISSN: 1078-0947 - Language:
- English
- Publication year:
- 2011
- Bibliographic description:
- Graff G., Jezierski J.: Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds// DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. -, (2011), s.523-532
- DOI:
- Digital Object Identifier (open in new tab) 10.3934/proc.2011.2011.523
- Verified by:
- Gdańsk University of Technology
seen 123 times
Recommended for you
Local fixed point indices of iterations of planar maps
- G. Graff,
- P. Nowak-Przygodzki,
- F. Ruiz Del Portal
2011
General form of fixed point indices of an iterated C^1 map andinfiniteness of minimal periods
- G. Graff,
- P. Nowak-Przygodzki
2008
Minimal number of periodic points for smooth self-maps of RP^3
- G. Graff,
- J. Jezierski,
- M. Nowak-Przygodzki
2010