Modeling of luminance distribution in CAVE-type virtual reality systems - Publication - Bridge of Knowledge

Search

Modeling of luminance distribution in CAVE-type virtual reality systems

Abstract

At present, one of the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems are usually consisted of four, five or six projection screens and in case of six screens arranged in form of a cube. Providing the user with a high level of immersion feeling in such systems is largely dependent of optical properties of the system. The modeling of physical phenomena plays nowadays a huge role in the most fields of science and technology. It allows to simulate work of device without a need to make any changes in the physical constructions. In this paper distribution of luminance in CAVE-type virtual reality systems were modelled. Calculations were performed for the model of 6-walled CAVE-type installation, based on Immersive 3D Visualization Laboratory, situated at the Faculty of Electronics, Telecommunications and Informatics at the Gdansk University of Technology. Tests have been carried out for two different scattering distribution of the screen material in order to check how these characteristicinfluence on the luminance distribution of the whole CAVE. The basis assumption and simplification of modeled CAVE-type installation and results were presented. The brief discussion about the results and usefulness of developed model were also carried out.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Conference activity
Type:
materiały konferencyjne indeksowane w Web of Science
Title of issue:
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2017
ISSN:
0277-786X
Language:
English
Publication year:
2017
Bibliographic description:
Meironke M., Mazikowski A..: Modeling of luminance distribution in CAVE-type virtual reality systems, W: PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2017, 2017, ,.
DOI:
Digital Object Identifier (open in new tab) 10.1117/12.2280869
Verified by:
Gdańsk University of Technology

seen 145 times

Recommended for you

Meta Tags