Abstract
This work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating photon movement. This allows the user to customize the simulation to their specific requirements, ensuring the results are as accurate and reliable as possible. It also models the detector to determine if a given photon is in the desired location. The program simulates the propagation of light from a normal illumination medium with anisotropic scattering and records the escape of photons on the upper surface. The simulation also takes into account absorption and scattering coefficients for a given wavelength, and data regarding these parameters are read from a .csv file. The variance reduction technique is used to improve the efficiency of the simulation. The user interface allows users to define their own parameters, such as wavelength, anisotropy coefficient, refractive index, and layer thickness. In this paper, we simulate four photodiodes and different distances between the source and detector to determine the most suitable model for designing a physical sensor.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-031-38430-1_19
- License
- Copyright (2024 Springer Nature Switzerland AG)
Keywords
Details
- Category:
- Monographic publication
- Type:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Stadnik P., Rogoń I., Kaczmarek M.: Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring// The Latest Developments and Challenges in Biomedical Engineering/ : , 2024, s.237-251
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/978-3-031-38430-1_19
- Sources of funding:
-
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 113 times