Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator - Publication - Bridge of Knowledge

Search

Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator

Abstract

Using the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions of Ambrosetti-Rabinowitz type.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 40 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS no. 485, pages 1 - 14,
ISSN: 0022-247X
Language:
English
Publication year:
2020
Bibliographic description:
Chmara M., Maksymiuk J.: Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator// JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS -Vol. 485,iss. 2 (2020), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jmaa.2019.123809
Bibliography: test
  1. M. Chmara, J. Maksymiuk, Mountain pass type periodic solutions for Euler-Lagrange equations in anisotropic Orlicz-Sobolev space, J. Math. Anal. Appl. 470 (1) (2019) 584-598. open in new tab
  2. Y. Song, B. Thompson, The dirichlet problem for the vector ordinary p-laplacian, J. Appl. Math. Comput. 47 (1) (2015) 381-399. open in new tab
  3. A. Cabada, R. L. Pouso, Existence theory for functional p-laplacian equations with variable exponents, Nonl. Anal. TMA 52 (2) (2003) 557-572. open in new tab
  4. M. del Pino, M. Elgueta, R. Manasevich, A homotopic deformation along p of a leray- schauder degree result and existence for (|u | p−2 u ) + f (t, u) = 0, u(0) = u(t) = 0, p > 1, J. Diff. Eq 80 (1) (1989) 1-13.
  5. R. Ma, L. Jiang, Existence of sign-changing solutions to equations involving the one- dimensional p-laplacian, J. Appl. Math. 2014. open in new tab
  6. R. Kajikiya, Y.-H. Lee, I. Sim, One-dimensional p-laplacian with a strong singular indefinite weight, i. eigenvalue, J. Diff. Eq. 244 (8) (2008) 1985-2019. open in new tab
  7. Y. Guo, W. Ge, Three positive solutions for the one-dimensional p-laplacian, J. Math. Anal. Appl. 286 (2) (2003) 491-508. open in new tab
  8. P. Drabek, J. Milota, Methods of Nonlinear Analysis: Applications to Differential Equations, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser Basel, 2007. open in new tab
  9. P. De Nápoli, M. C. Mariani, Mountain pass solutions to equations of p-Laplacian type, Nonlinear Anal. 54 (7) (2003) 1205-1219. open in new tab
  10. P. Clément, B. Pagter, G. Sweers, F. Thélin, Existence of Solutions to a Semilinear Elliptic System through Orlicz-Sobolev Spaces, Mediter. J. Math. 1 (3) (2004) 241- 267. open in new tab
  11. G. Barletta, A. Cianchi, Dirichlet problems for fully anisotropic elliptic equations, Proc. Royal Soc. Ed. 147 (1) (2017) 25-60. open in new tab
  12. P. Clément, M. Garcí a-Huidobro, R. Manásevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (1) (2000) 33-62. open in new tab
  13. M. Chmara, J. Maksymiuk, Anisotropic Orlicz-Sobolev spaces of vector valued func- tions and Lagrange equations, J. Math. Anal. Appl. 456 (1) (2017) 457-475. open in new tab
  14. L. Maligranda, Orlicz spaces and interpolation, Vol. 5 of Seminários de Matemática [Seminars in Mathematics], 1989.
  15. S. Acinas, F. Mazzone, Periodic solutions of Euler-Lagrange equations in an Orlicz- Sobolev space setting, Revista de la Union Matematica Argentina(In press).
  16. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal. 14 (4) (1973) 349-381. open in new tab
  17. Department of Technical Physics and Applied Mathematics, Gdańsk Uni- versity of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland E-mail address: magdalena.chmara@pg.edu.pl, jakub.maksymiuk@pg.edu.pl open in new tab
Verified by:
Gdańsk University of Technology

seen 141 times

Recommended for you

Meta Tags