Abstract
We study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions $\Phi$ so our result generalizes earlier analogous results proved in isotropic setting.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Author (1)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach dostępnych w wersji elektronicznej [także online]
- Published in:
-
ANNALI DI MATEMATICA PURA ED APPLICATA
ISSN: 0373-3114 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Wroński K., Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain, ANNALI DI MATEMATICA PURA ED APPLICATA, 2024,10.1007/s10231-024-01477-5
- DOI:
- Digital Object Identifier (open in new tab) 10.1007/s10231-024-01477-5
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 26 times
Recommended for you
Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
- V. Eremeev,
- F. dell'Isola,
- C. Boutin
- + 1 authors
2018