Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain - Publication - Bridge of Knowledge

Search

Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain

Abstract

We study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden the class of considered functions $\Phi$ so our result generalizes earlier analogous results proved in isotropic setting.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ANNALI DI MATEMATICA PURA ED APPLICATA no. 204, pages 147 - 161,
ISSN: 0373-3114
Language:
English
Publication year:
2025
Bibliographic description:
Wroński K.: Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain// ANNALI DI MATEMATICA PURA ED APPLICATA -Vol. 204, (2025), s.147-161
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10231-024-01477-5
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 49 times

Recommended for you

Meta Tags