Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness
Abstract
This paper presents a novel complementary resonator featuring high sensitivity, low fabrication cost, and improved performance. The proposed structure consists of a complementary concentric square and circular ring resonator (CCSCRR) with multiple splits to enhance the inductance of the resonator. The proposed CCSCRR is coupled to a microstrip transmission line with an impedance of fifty ohms to create a high-sensitivity sensor. The lumped element equivalent circuit is employed to explain the sensor's operating principle. The geometric parameters of the CCSCRR are optimized to resonate at 15 GHz and the optimized sensor is fabricated on 0.762 mm thick dielectric substrate AD250 (εr = 2.5 ± 0.04). Dielectric materials with relative permittivity ranging from 2.5 to 10.2 and thickness from 0.508 mm to 1.905 mm are employed to investigate the properties of the proposed sensor and to carry out its calibration. Based on the measured resonant frequencies of the CCSCRR sensor when loaded with different materials under test (MUTs), an inverse regression model is constructed to predict the permittivity of the MUT. Comparisons with state-of-the-art microwave devices show that the proposed design is superior in terms of sensitivity, dielectric characterization reliability, and the applicability scope in terms of the MUT’s thickness and permittivity.
Citations
-
3
CrossRef
-
0
Web of Science
-
3
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
IEEE SENSORS JOURNAL
no. 24,
pages 195 - 203,
ISSN: 1530-437X - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Haq Ul T., Kozieł S.: Novel Complementary Resonator for Dielectric Characterization of Substrates Based on Permittivity and Thickness// IEEE SENSORS JOURNAL -Vol. 24,iss. 1 (2023), s.195-203
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/jsen.2023.3332124
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 54 times