Nuclear Power Plant Steam Turbine - Modeling for Model Based Control Purposes - Publication - Bridge of Knowledge

Search

Nuclear Power Plant Steam Turbine - Modeling for Model Based Control Purposes

Abstract

The nature of the processes taking place in a nuclear power plant (NPP) steam turbine is the reason why their modeling is very difficult, especially when the model is intended to be used for on-line optimal model based process control over a wide range of operating conditions, caused by changing electrical power demand e.g. when combined heat and power mode of work is utilized. The paper presents three nonlinear models of NPP steam turbine, which are: the static model, and two dynamic versions, detailed and simplified. As the input variables, the models use the valve opening degree and the steam flow properties: mass flow rate, pressure and temperature. The models enable to get access to many internal variables describing process within the turbine. They can be treated as the output or state variables. In order to verify and validate the models, data from the WWER-440/213 reactor and the 4 CK 465 turbine were utilized as the benchmark. The performed simulations have shown good accordance of the static and dynamic models with the benchmark data in steady state conditions. The dynamic models also demonstrated good behavior in transient conditions. The models were analyzed in terms of computational load and accuracy over a wide range of varying inputs and for different numerical calculation parameters, especially time step values. It was found that the detailed dynamic model, due to its complexity and the resultant long calculation time, is not applicable in advanced control methods, e.g. model predictive control. However, the introduced simplifications significantly decreased the computational load, which enables to use the simplified model for on-line control.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 141 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
APPLIED MATHEMATICAL MODELLING no. 48, pages 491 - 515,
ISSN: 0307-904X
Language:
English
Publication year:
2017
Bibliographic description:
Kulkowski K., Grochowski M., Duzinkiewicz K., Kobylarz A.: Nuclear Power Plant Steam Turbine - Modeling for Model Based Control Purposes// APPLIED MATHEMATICAL MODELLING. -Vol. 48, (2017), s.491-515
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.apm.2017.04.008
Bibliography: test
  1. I. Dincer , M.A. Rosen , Energy: Energy, Environment and Sustainable Development, Elsevier, 2013 ISBN: 978-0-08-097089-9 . open in new tab
  2. P. Hirsch, K. Duzinkiewicz, M. Grochowski, R. Piotrowski, Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems, Appl. Energy 182 (2016) 164-176, doi: 10.1016/i.apenergy,2016.08.107 . open in new tab
  3. H. Safa , Heat recovery from nuclear power plants, Electr. Power Energy Syst. 42 (2012) 553-559 . open in new tab
  4. J. Dobosz , K. Duzinkiewicz , S. Perycz , W. Próchnicki , Steam Turbine Simulation Model of Transient States for Nuclear Power Unit with WWER-440 Reactor with Omega = Const, Gda ńsk University of Technology, Gdansk, 1989 (in Polish) .
  5. S. Perycz , W. Próchnicki , Steam Turbine Mathematical Model of Nuclear Power Unit with WWER Reactor, Allowing to Analyze Transient States with Omega = Var, Gda ńsk University of Technology, Gdansk, 1989 (in Polish) .
  6. W. Grote , Ein Beitrag zur modellbasierten Regelung von Entnahmedampfturbinen, PhD Dissertation, Ruhr-Universität Bochum, Bochum, 2009 .
  7. J. Bassas , Development and implementation of a nuclear power plant steam turbine model in the system code ATHLET, Master Thesis, Technische Universität München, München, 2011 .
  8. K. Badyda , G. Niewi ński , Mathematical steam unit model for energetic unit simulator, chosen issues, Modelowanie in żynierskie 33 (2007) 11-18 . Gliwice (in Polish).
  9. A. Chaibakhsh , A. Ghaffari , Steam turbine model, Simul. Modell. Pract. Theory 16 (2008) 1145-1162 . open in new tab
  10. K. Duzinkiewicz , M. Grochowski , A. Kobylarz , K. Kulkowski , Modelling of nuclear power plant steam turbine, Aktualne Problemy Automatyki i Robotyki, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2014, pp. 603-611 .
  11. A. Miller , Mathematical backpressure turbine, Bull. Inst. Heat Eng. 28 (1970) 5-24 . Warsaw University of Technology (in Polish).
  12. Z. Jankowski , Ł. Kurpisz , L. Laskowski , J. Łajkowski , A. Miller , J. Portacha , W. Sikora , M. Zgorzelski , Mathematic model of turbine in various conditions e.g. 200 MW power unit, Bull. Inst. Heat Eng. 33 (1972) 1-36 . Warsaw University of Technology (in Polish).
  13. J.M. Medina-Flores , M. Picón-Núñez , Modelling the power production of single and multiple extraction steam turbines, Chem. Eng. Sci. 65 (2010) 2811-2820 . open in new tab
  14. G.M. Niewi ński , Mathematical model of steam unit, Modelowanie in żynierskie 36 (2008) 365-372 Gliwice (in Polish) . open in new tab
  15. B. Grunwald , J. Lewandowski , A. Miller , J. Plewa , Mathematical steam turbine model for saturated steam, allowing to study dynamics of nuclear power plant unit, Bull. Inst. Heat Eng. 57 (1980) 1-18 . Warsaw University of Technology (in Polish).
  16. W. Bolek , J. Sasiadek , T. Wisniewski , Two-valve control of large steam turbine, Control Eng. Pract. 10 (2002) 365-377 . open in new tab
  17. D. Zivkovi ć , Nonlinear mathematical model of the condensing steam turbine, Facta Univ. Mech. Eng. 1 (7) (20 0 0) 871-878 . open in new tab
  18. M. Klawe , D. Pietrzak , Developing Usable Version Dyne and DROP Programs and their Documentation and Manuals, The Institute of Energy, Institute of Heat Engineering, Warszawa, 1982 (in Polish) . open in new tab
  19. K. Duzinkiewicz , M. Grochowski , K. Kobylarz , K. Kulkowski , Dynamic model of nuclear power plant steam turbine, Arch. Control Sci. 25 (1) (2015) 65-86 (LXI) .
  20. K. Duzinkiewicz , T.K. Nowak , R. Piotrowski , Fractional neutron point kinetics equations for nuclear reactor dynamics -numerical solution investiga- tions, Ann. Nuclear Energy 73 (2014) 317-329 .
  21. K. Duzinkiewicz , T.K. Nowak , R. Piotrowski , Numerical solution analysis of fractional point kinetics and heat exchange in nuclear reactor, Nuclear Eng. Des. 281 (2015) 121-130 .
  22. K. Duzinkiewicz , M. Grochowski , K. Kulkowski , Efficiency of process abnormality detection in steam turbine of nuclear power plant using multivariate statistical analysis methods, in: Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gda ńskiej, 2015, pp. 107-110 .
Verified by:
Gdańsk University of Technology

seen 156 times

Recommended for you

Meta Tags