Abstract
This study investigated Lu doping of Ba0.5La0.5CoO3 and its influence on the exsolution of oxide nanoparticles (NPs). As a result of Lu doping, we observed the phase segregation into the main Ba0.4La0.6Co0.85Lu0.15O3 (BLCO–Lu) phase and the secondary Ba0.85La0.15Co0.75Lu0.25O3 (BCO–Lu) phase. We noticed the exsolution of BCO–Lu nanoparticles on the main BLCO–Lu phase. Moreover, the BLCO–Lu phase exsolved in the form of nanoparticles on the adjacent BCO–Lu grains. That shows that the phases are covered with mutually exsolved oxide NPs. In addition, trace amounts of the BaLuCo4O7 phase are detected. We noticed that the exsolved oxides even in the as-prepared sample were fine (average size of 18 nm), and well distributed with a dense population of NPs above 280 per 1 μm2. Furthermore, we showed that the size and shape of the exsolved oxide NPs can be controlled by varying the annealing temperature. For example, at 800 °C the exsolved oxides segregate and form two different shapes; spherical and cuboidal, with an average size of 31 nm and NP population of about 23 NPs per μm2. Meanwhile, with lowering the temperature to 400 °C the oxides form only spherical and quite evenly distributed NPs with the occurrence of 137 NPs per 1 μm2. The obtained results open the possibility of tailoring a novel, more catalytically active material for future applications in electrochemical devices.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (12)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
CRYSTENGCOMM
no. 25,
pages 4306 - 4316,
ISSN: 1466-8033 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Balcerzak D., Szpunar I., Strandbakke R., Saeed S. W., Bazioti C., Mielewczyk-Gryń A., Winiarz P., Carrillo A., Balaguer M., Serra J. M., Gazda M., Wachowski S.: Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3// CRYSTENGCOMM -,iss. 30 (2023), s.4306-4316
- DOI:
- Digital Object Identifier (open in new tab) 10.1039/d3ce00422h
- Sources of funding:
-
- Project Functional Grading by Key doping in Catalytic electrodes for Proton Ceramic Cells
- The Research Council of Norway that supported the Norwegian Center for Transmission Electron Microscopy (NORTEM) (no. 197405/F50).
- Verified by:
- Gdańsk University of Technology
seen 67 times
Recommended for you
Synthesis, characteristics, and photocatalytic activity of zinc oxide nanoparticles stabilized on the stone surface for degradation of metronidazole from aqueous solution
- A. N. Alibeigi,
- N. Javid,
- M. Amiri Gharaghani
- + 2 authors
Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell
- P. Lee,
- T. Wu,
- C. Li
- + 8 authors
Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell
- P. Lee,
- T. Wu,
- C. Li
- + 8 authors