Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction - Publication - Bridge of Knowledge

Search

Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction

Abstract

Magnetic skyrmions, which are topologically distinct magnetic spin textures, are gaining increased attention for their unique physical properties and potential applications in spintronic devices. Here we present a design strategy for skyrmion host candidates based on combinations of magnetic spin, asymmetric building units having stereoactive lone-pair electrons, and polar lattice symmetry. To demonstrate the viability of the proposed rational design principles, we successfully synthesized a Fe(IO3)3 polycrystalline sample and single crystals by using a new simplified low-temperature pathway, which is experimentally feasible for extending materials growth of transition metal iodates. Single crystal X-ray and powder synchrotron X-ray diffraction measurements demonstrated that Fe(IO3)3 crystallizes in the polar chiral hexagonal lattice with space group P63. The combined structural features of the macroscopic electric polarization along the c-axis stemming from the coalignment of the stereoactive lone-pairs of the IO3– trigonal pyramid and the magnetic Fe3+ cation residing on the 3-fold rotation axis were selected to promote asymmetric exchange coupling. We find evidence of a predicted skyrmion phase at 14 K ≤ T ≤ 16 K and 2.5 T ≤ μ0H ≤ 3.2 T driven by a Dzyaloshinskii–Moriya (DM) interaction, a conclusion supported by the appreciable DM exchange and the zero-field spiral antiferromagnetic ground state of Fe(IO3)3 deduced from neutron diffraction experiments. The associated magnetic modulation wavelength of the putative skyrmions is expected to be short ∼18 nm, comparable to the period of the DM-driven incommensurate order. This work links stereoactive lone-pair electron effects to enhanced DM interaction, demonstrating a new approach for chemical guidelines in the search for skyrmionic states of matter.

Citations

  • 9

    CrossRef

  • 0

    Web of Science

  • 8

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CHEMISTRY OF MATERIALS no. 33, pages 4661 - 4671,
ISSN: 0897-4756
Language:
English
Publication year:
2021
Bibliographic description:
Oyeka E. E., Winiarski M., Błachowski A., Taddei K. M., Scheie A., Tran T.: Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction// CHEMISTRY OF MATERIALS -Vol. 33,iss. 12 (2021), s.4661-4671
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.chemmater.1c01163
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags