Abstract
The emergence of novel magnetic states becomes more likely when the inversion symmetry of the crystal field, relative to the center between two spins, is broken. We propose that placing magnetic spins in inequivalent sites in a polar lattice can promote a realization of nontrivial magnetic states and associated magnetic properties. To test our hypothesis, we study Fe2(SeO3)(H2O)3 as a model system that displays two distinct Fe(1) and Fe(2) magnetic sites in a polar structure (R3c space group). At low fields μ0H 0.06 T, the material undergoes an antiferromagnetic ordering with TN1 = 77 K and a second transition at TN2 4 K. At μ0H 0.06 T and 74 K T 76 K, a positive entropy change of ∼0.12 mJ mol−1 K−1 can be associated with a metamagnetic transition to possibly nontrivial spin states. At zero field, Fe(1) is nearly fully ordered at T 25 K, while Fe(2) features magnetic frustration down to T = 4 K. The magnetic ground state, a result corroborated by single-crystal neutron diffraction and 57Fe Mössbauer spectroscopy, is a noncollinear antiparallel arrangement of ferrimagnetic Fe(1)–Fe(2) dimers along the c-axis. The results demonstrate that placing distinct magnetic sites in a polar crystal lattice can enable a new pathway to modifying spin, orbital, and lattice degrees of freedom for unconventional magnetism.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (7)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
APL Materials
no. 12,
ISSN: 2166-532X - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Oyeka E. E., Huai X., Marshall M., Winiarski M., Błachowski A., Cao H., Tran T.: Noncollinear polar magnet Fe2(SeO3)3(H2O)3 with inequivalent Fe3+ sites// APL Materials -,iss. 12 (2024), s.121115-121115
- DOI:
- Digital Object Identifier (open in new tab) 10.1063/5.0241243
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 2 times
Recommended for you
Potential Skyrmion Host Fe(IO3)3: Connecting Stereoactive Lone-Pair Electron Effects to the Dzyaloshinskii-Moriya Interaction
- E. E. Oyeka,
- M. Winiarski,
- A. Błachowski
- + 3 authors
Spin and Orbital Effects on Asymmetric Exchange Interaction in Polar Magnets: M(IO3)2 (M = Cu and Mn)
- E. E. Oyeka,
- M. Winiarski,
- M. Sorolla II
- + 3 authors
Site-selective magnetic order of neptunium inNp2Ni17
- A. Hen,
- N. Magnani,
- J. Griveau
- + 8 authors