Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations - Publication - Bridge of Knowledge

Search

Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations

Abstract

The operation of high-frequency devices, including microwave passive components, can be impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions (temperature, input power levels) and material parameters (e.g., substrate permittivity). Although the accuracy of manufacturing processes is always limited, the effects of parameter deviations can be accounted for in advance at the design phase through optimization of suitably selected statistical performance figures. Perhaps the most popular one is the yield, which provides a straightforward assessment of the likelihood of fulfilling performance conditions imposed upon the system given the assumed deviations of designable parameters. The latter are typically quantified by means of probability distributions pertinent to the fabrication process. The fundamental obstacle of the yield-driven design is its high computational cost. The primary mitigation approach nowadays is the employment of surrogate modeling methods. Yet, a construction of reliable metamodels becomes problematic for systems featuring a large number of degrees of freedom. Our work proposes a technique for fast yield optimization of microwave passives, which relies on response feature technology as well as variable-fidelity simulation models. Utilization of response features enables efficient handling of issues related to the system response nonlinearities. Meanwhile, the incorporation of variable-resolution simulations allows for accelerating the yield estimation process, which translates into remarkably low overall cost of the optimizing the yield. Our approach is verified with the use of three microstrip couplers. Comprehensive benchmarking demonstrates its superiority in terms of computational efficiency over the state-of-the-art algorithms, whereas reliability is corroborated by electromagnetic (EM)-driven Monte Carlo simulations.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 12,
ISSN: 2045-2322
Language:
English
Publication year:
2022
Bibliographic description:
Pietrenko-Dąbrowska A., Kozieł S.: Rapid Yield Optimization of Miniaturized Microwave Passives by Response Features and Variable-Fidelity EM Simulations// Scientific Reports -Vol. 12, (2022), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-022-26562-8
Sources of funding:
  • COST_FREE
Verified by:
Gdańsk University of Technology

seen 42 times

Recommended for you

Meta Tags