Shallow Water Experiment of OFDM Underwater Acoustic Communications - Publication - MOST Wiedzy


Shallow Water Experiment of OFDM Underwater Acoustic Communications


The large variability of communication properties of underwater acoustic channels, and especially the strongly varying instantaneous conditions in shallow waters, is a challenge for the designers of underwater acoustic communication (UAC) systems. The use of phase modulated signals does not allow reliable data transmission through such a tough communication channel. However, orthogonal frequency-division multiplexing (OFDM), being a multi-carrier amplitude and phase modulation technique applied successfully in the latest standards of wireless communications, gives the chance of reliable communication with an acceptable error rate. This paper describes communication tests conducted with the use of a laboratory model of an OFDM data transmission system in a shallow water environment in Wdzydze Lake.


  • 0


  • 4

    Web of Science

  • 3


Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
Creative Commons: CC-BY-SA open in new tab



artykuły w czasopismach
Published in:
Archives of Acoustics no. 45, pages 11 - 18,
ISSN: 0137-5075
Publication year:
Bibliographic description:
Kochańska I., Schmidt J., Marszal J.: Shallow Water Experiment of OFDM Underwater Acoustic Communications// Archives of Acoustics -Vol. 45,iss. 1 (2020), s.11-18
Digital Object Identifier (open in new tab) 10.24425/aoa.2019.129737
Bibliography: test
  1. Bradbeer R., Law E., Yeung E. (2003), Using multi-frequency modulation in a modem for the trans- mission of near realtime video in an underwater envi- ronment, Proceedings of 2003 IEEE International Con- ference on Consumer Electronics, ICCE 2003, pp. 360- 361, Los Angeles, doi: 10.1109/ICCE.2003.1218974. open in new tab
  2. Chitre M., Ong S.H., Potter J. (2005), Perfor- mance of coded OFDM in very shallow water channels and snapping shrimp noise, Proceedings of OCEANS 2005 MTS/IEEE, Washington, DC, 2005, Vol. 2, pp. 996-1001, doi: 10.1109/OCEANS.2005.1639884. open in new tab
  3. Coatelan S., Glavieux A. (1995), Design and test of coding OFDM system on the shallow water acoustic channel, Challenges of Our Changing Global Environment. Conference Proceedings. OCEANS '95 open in new tab
  4. MTS/IEEE, Vol. 3, pp. 2065-2070, San Diego, Cali- fornia, USA, doi: 10.1109/OCEANS.1995.528896. open in new tab
  5. ETSI TS 136 213, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures, 3GPP TS 36.213 version 13.0.0, Release 13. 3GPP. open in new tab
  6. Frassati F., Lafon C., Laurent P., Passerieux J. (2005), Experimental Assessment of OFDM and DSSS modulations for use in littoral waters underwa- ter acoustic communications, Proceedings of Europe Oceans 2005, Brest, France, 2005, Vol. 2, pp. 826-831, doi: 10.1109/OCEANSE.2005.1513163. open in new tab
  7. Kochańska I., Nissen I., Marszal J. (2018), A method for testing the wide-sense stationary un- correlated scattering assumption fulfillment for an un- derwater acoustic channel, The Journal of the Acous- tical Society of America, 143(2): EL116-EL120, doi: 10.1121/1.5023834. open in new tab
  8. Kochańska I., Schmidt J., Rudnicki M. (2016), Underwater acoustic communications in time-varying dispersive channels, Proceedings of the 2016 Federa- ted Conference on Computer Science and Informa- tion Systems, M. Ganzha, L. Maciaszek, M. Paprzyc- ki (Eds), ACSIS, Vol. 8, pp. 467-474, Gdańsk, doi: 10.15439/2016F412. open in new tab
  9. Nissen I. (2005), Pilot-based OFDM-systems for un- derwater communication applications, Proceedings of Conference on New Concepts for Harbour Protec- tion, Littoral Security and Underwater Acoustic Com- munications, TICA 2005, Istanbul, abstract=2188243.
  10. Qingfeng J., Ming C., Yuping L., Weizhi Z., Hongwei Y. (2014), Pseudo-noise preamble based joint frame and frequency synchronization algorithm in OFDM communication systems, Journal of Systems Engineering and Electronics, 25(1): 1-9, doi: 10.1109/ JSEE.2014.00001.
  11. Schmidt J.H. (2016), The development of an under- water telephone for digital communication purposes, Hydroacoustics, 19: 341-352.
  12. Schmidt J.H., Kochańska I., Schmidt A.M. (2017), Measurement of impulse response of shallow water communication channel by correlation method, Hydroacoustics, 20: 149-158.
  13. Sklar B. (1997), Rayleigh fading channels in mobile digital communication systems. I. Characterization, IEEE Communications Magazine, 35(9): 136-146, doi: 10.1109/35.620535. open in new tab
  14. Stojanovic M. (2006), Low complexity OFDM de- tector for underwater acoustic channels, Proceedings of IEEE OCEANS 2006, Boston, MA, doi: 10.1109/ OCEANS.2006.307057. open in new tab
  15. Tufvesson F., Faulkner M., Edfors O. (1999), Time and frequency synchronization for OFDM us- ing PN-sequence preambles, Proceedings of IEEE Ve- hicular Technology Conference, Vol. 4, pp. 2203-2207, Amsterdam, The Netherlands, September 19-22, doi: 10.1109/VETECF.1999.797329. open in new tab
  16. van Walree P., Socheleau F. X., Otnes R., Jenserud T. (2017), The watermark benchmark for underwater acoustic modulation schemes, IEEE Jour- nal of Oceanic Engineering, 42(4): 1007-1018, doi: 10.1109/JOE.2017.2699078. open in new tab
  17. Zhou S., Wang Z. (2014), OFDM for underwater acoustic communications, John Wiley & Sons. open in new tab
  18. Zhenrui C., Yahong R.Z., Jintao W., Jian S. (2013), Synchronization and Doppler scale estima- tion with dual PN padding TDS-OFDM for under- water acoustic communication, Proceedings of 2013 OCEANS -San Diego, San Diego, CA, pp. 1-4, doi: 10.23919/OCEANS.2013.6741170. open in new tab
Verified by:
Gdańsk University of Technology

seen 49 times

Recommended for you

Meta Tags