Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea - Publication - Bridge of Knowledge

Search

Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea

Abstract

Among nanomaterials, silver nanoparticles (AgNPs) have the broadest and most commercial applications due to their antibacterial properties, highlighting the need for exploring their potential toxicity and underlying mechanisms of action. Our main aim was to investigate whether AgNPs exert toxicity by inducing oxidative damage to DNA in human kidney HEK 293 cells. In addition, we tested whether this damage could be counteracted by plant extracts containing phytochemicals such as swertiamarin, mangiferin and homoorientin with high antioxidant abilities. We show that AgNPs (20nm) are taken up by cells and localised in vacuoles and cytoplasm. Exposure to 1, 25 or 100 µg/ml AgNPs leads to a significant dose-dependent increase in oxidised DNA base lesions (8-oxo-7,8-dihydroguanine or 8-oxoG) detected by the comet assay after incubation of nucleoids with 8-oxoG DNA glycosylase. Oxidised DNA base lesions and strand breaks caused by AgNPs were diminished by aqueous and methanolic extracts from both haulm and flower of Gentiana asclepiadea.

Citations

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Authors (19)

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Copyright (The Author 2012. Published by Oxford University Press)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MUTAGENESIS no. 27, edition 6, pages 759 - 769,
ISSN: 0267-8357
Language:
English
Publication year:
2012
Bibliographic description:
Hudecová A., Kusznierewicz B., Rundén-Pran E., Magdolenová Z., Haąplová K., Rinna A., Fjellsbø L., Kruszewski M., Lankoff A., Sandberg W., Refsnes M., Skuland T., Schwarze P., Brunborg G., Bjøras M., Collins A., Miadoková E., Gálová E., Duąinská M.: Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea// MUTAGENESIS. -Vol. 27, iss. 6 (2012), s.759-769
DOI:
Digital Object Identifier (open in new tab) 10.1093/mutage/ges046
Bibliography: test
  1. Salata, O. V. (2004) Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2, 3-9. open in new tab
  2. SCENIHR. (2007) Scientific Committee on Emerging and Newly-Identified HealthRisks: The Existing and Proposed Definitions Relating to Products of Nanotechnologies. open in new tab
  3. Imasaka, K., Kanatake, Y., Ohshiro, Y., Suehiro, J. and Harashima, H. (2006) Production of carbon nanoonions and nanotubes using an intermit- tent discharge in water. Thin Solid Films, 506, 250-254. open in new tab
  4. Warner, J. H., Ito, Y., Zaka, M. et al. (2008) Rotating fullerene chains in carbon nanopeapods. Nano. Lett., 8, 2328-2335. open in new tab
  5. Dandekar, P., Dhumal, R., Jain, R., Tiwari, D., Vanage, G. and Patravale, V. (2010) Toxicological evaluation of pH-sensitive nanoparticles of cur- cumin: acute, sub-acute and genotoxicity studies. Food Chem. Toxicol., 48, 2073-2089. open in new tab
  6. Singh, N., Manshian, B., Jenkins, G. J. S., Griffiths, S. M., Williams, P. M., Maffeis, T. G. G., Wright, C. H. J. and Doak, S. H. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nano- materials. Biomaterials, 30, 3891-3914. open in new tab
  7. Henig, R. M. (2007) Our silver-coated future. OnEarth, Fall, 22-29. open in new tab
  8. Melayie, A., Sun, Z., Hindi, K., Milsted, A., Ely, D., Reneker, D. H., Tessier, C. A. and Youngs, W. J. (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc., 127, 2285-2291. open in new tab
  9. Margaret, I. P., Lui, S. L., Poon, V. K., Lung, I. and Burd, A. (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J. Med. Microbiol., 55, 59-63.
  10. Vigneshawaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P. and Balasubramanya, R. H. (2007) Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol., 7, 1893-1897. open in new tab
  11. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J. and Autrup, H. (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett., 190, 156-162. open in new tab
  12. Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science, 311, 622-627. open in new tab
  13. Vidal, A. E., Hickson, I. D., Boiteux, I. and Radicella, J. P. (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res., 29, 1285-1292. open in new tab
  14. Matsukawa, K., Ogata, M., Hikage, T. et al. (2006) Antiproliferative activity of root extract from Gentian plant (Gentiana triflora) on cul- tured and implanted tumor cells. Biosci. Biotechnol. Biochem., 70, 1046-1048. open in new tab
  15. Georgieva, E., Handjieva, N., Popov, S. and Evstatieva, L. (2005) Comparative analysis of the volatiles from flowers and leaves of three Gentiana species. Biochem. Syst. Ecol., 33, 938-947. open in new tab
  16. Saric, M. (1989) Medicinal plants of SR Serbia, SASA, Belgrade, 9, 278 (in Serbian).
  17. Hudecova, A., Hasplova, K., Miadokova, E. et al. (2012) Gentiana ascle- piadea protects human cells against oxidation DNA lesions. Cell Biochem. Funct., 30, 101-107. open in new tab
  18. Lankoff, A., Sandberg, W. J., Wegierek-Ciuk, A. et al. (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett., 208, 197-213. open in new tab
  19. Collins, A., Dusinska, M., Gedik, A. C. and Stetina, R. (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ. Health Perspect., 104, 465-469. open in new tab
  20. Collins, A. and Dusinska, M. (2009) Application of the comet assay in human monitoring. In Dhawan, A., Anderson, D. (eds), The Comet Assay in Toxicology. Royal Society of Chemistry, Cambridge, pp. 201-221. open in new tab
  21. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J. and Hong, Y. (2008) DNA damage response to different surface chem- istry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol., 233, 404-410. open in new tab
  22. Hsin, Y. H., Chen, C. H. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. (2008) The apoptic effect of nanosilver is mediated by ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett., 179, 130-139. open in new tab
  23. Shin, S. H., Ye, M. K., Kim, S. H. and Kang, H. S. (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunophramacol., 7, 1813-1818. open in new tab
  24. Cha, K., Wong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G. and Myung, H. (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett., 30, 1893-1899. open in new tab
  25. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro, 19, 975-983. open in new tab
  26. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J. and Autrup, H. (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett., 190, 156-162. open in new tab
  27. Wojewodzka, M., Lankoff, A., Dusinska, M., Brunborg, G., Czerwinska, J., Iwanenko, T., Stepkowski, T., Szumiel, I. and Kruszewski, M. (2011) Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleoinka, 56, 29-33.
  28. Dusinska, M. and Collins, A. (2008) The comet assay in human biomoni- toring: gene-environment interactions. Mutagenesis, 23, 191-205. open in new tab
  29. Bjøras, M., Luna, L., Johnsen, B., Hoff, E., Haug, T., Rognes, T. and Seeberg, E. (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J., 16, 6314-6322. open in new tab
  30. Morland, I., Rolseth, V., Luna, L., Rognes, T., Bjøras, M. and Seeberg, E. (2002) Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res., 30, 4926-4936. open in new tab
  31. Szucs, Z., Danos, B. and Nyiredy, S. (2002) Comparative analysis of the underground parts of Gentiana species by HPLC with diode-array and mass spectrometric detection. Chromatographia, 56, 19-23. open in new tab
  32. Jiang, R. W., Wong, K. L., Chan, Y. M., Xu, H. X., But, P. P. H. and Shaw, P. C. H. (2005) Isolation of iridoid and secoiridoid glycosides and comparative study on Radix gentianae and related adulterants by HPLC analysis. Phytochemistry, 66, 2674-2680. open in new tab
  33. Dinda, B., Debnath, S. and Harigaya, Y. (2007) Naturally occuring secoiri- doids and bioactivity of naturally occuring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull., 55, 689-728. open in new tab
  34. Hudecova, A., Hasplova, K., Miadokova, E., Magdolenova, Z., Rinna, A., Galova, E., Vaculcikova, D., Gregan, F. and Dusinska, M. (2010) Cytotoxic and genotoxic effect of methanolic flower extract from Gentiana asclepia- dea on COS 1 cells. Neuroendocrinol. Lett., 31, 21-25.
  35. Hudecova, A., Kusnierewicz, B., Hasplova, K., Huk, A., Magdolenova, Z., Miadokova, E., Galova, E. and Dusinska, M. (2012) Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxide- and silver nanoparticles-induced DNA damage. Food Chem. Toxicol., 50, 3352-3359. open in new tab
  36. Kusznierewicz, B., Piasek, A., Bartoszek, A. and Namieśnik, J. (2011) The optimisation of analytical parameters for routine profiling of antioxi- dants in complex mixtures by HPLC coupled post-column derivatisation. Phytochem. Anal., 22, 392-402. open in new tab
  37. Rao, B. S. S., Sreedevi, M. V. and Rao, B. N. (2011) Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cad- mium chloride induced toxicity in HepG2 cells. Food Chem. Toxicol., 47, 592-600.
  38. Das, S., Rao, B. N. and Rao, B. S. S. (2011) Mangiferin attenuates methyl- mercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chem. Biol. Interact., 193, 129-140. open in new tab
  39. Zeraik, M. L., Serteyn, D., Deby-Dupont, G., Wauters, J. N., Tits, M., Yariwake, J. H., Angenot, L. and Franck, T. (2011) Evaluation of the anti- oxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays. Food Chem., 128, 259-265. open in new tab
  40. Zielińska, D. and Zieliński, H. (2011) Antioxidant activity of flavone C-glucosides determined by updated analytical strategies. Food Chem., 124, 672-678. open in new tab
  41. Jaishree, V. and Badami, S. (2010) Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J. Ethnopharmacol., 130, 103-106. open in new tab
  42. Ozono, R. (2006) New biotechnological methods to reduce oxidative stress in the cardiovascular system: focusing on the Bach1/heme oxygenase-1 pathway. Curr. Pharm. Biotechnol., 7, 87-93. open in new tab
  43. Kusar, A., Zupancic, A., Sentjurc, M. and Baricevic, D. (2006) Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance. Hum. Exp. Toxicol., 25, 599-604. open in new tab
  44. Ozturk, N., Korkmaz, Y., Ozturk, Y. and Husnu Can Baser, K. (2006) Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. Symphyandra), on cultured chicken embryonic fibroblasts. Planta Med., 72, 289-294.
  45. Verschooten, L., Smaers, K., Kelst, S. V., Proby, C., Maes, D., Declercq, L., Agostinis, P. and Garmyn, M. (2010) The flavonoid luteolin increases the resistance of normal, but not malignant keratinocytes, against UVB-induced apoptosis. J. Invest. Dermatol., 130, 2277-2285. open in new tab
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags