Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea - Publikacja - MOST Wiedzy

Wyszukiwarka

Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea

Abstrakt

Among nanomaterials, silver nanoparticles (AgNPs) have the broadest and most commercial applications due to their antibacterial properties, highlighting the need for exploring their potential toxicity and underlying mechanisms of action. Our main aim was to investigate whether AgNPs exert toxicity by inducing oxidative damage to DNA in human kidney HEK 293 cells. In addition, we tested whether this damage could be counteracted by plant extracts containing phytochemicals such as swertiamarin, mangiferin and homoorientin with high antioxidant abilities. We show that AgNPs (20nm) are taken up by cells and localised in vacuoles and cytoplasm. Exposure to 1, 25 or 100 µg/ml AgNPs leads to a significant dose-dependent increase in oxidised DNA base lesions (8-oxo-7,8-dihydroguanine or 8-oxoG) detected by the comet assay after incubation of nucleoids with 8-oxoG DNA glycosylase. Oxidised DNA base lesions and strand breaks caused by AgNPs were diminished by aqueous and methanolic extracts from both haulm and flower of Gentiana asclepiadea.

Cytowania

  • 3 9

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Autorzy (19)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 43 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (The Author 2012. Published by Oxford University Press)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
MUTAGENESIS nr 27, wydanie 6, strony 759 - 769,
ISSN: 0267-8357
Język:
angielski
Rok wydania:
2012
Opis bibliograficzny:
Hudecová A., Kusznierewicz B., Rundén-Pran E., Magdolenová Z., Haąplová K., Rinna A., Fjellsbø L., Kruszewski M., Lankoff A., Sandberg W., Refsnes M., Skuland T., Schwarze P., Brunborg G., Bjøras M., Collins A., Miadoková E., Gálová E., Duąinská M.: Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea// MUTAGENESIS. -Vol. 27, iss. 6 (2012), s.759-769
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1093/mutage/ges046
Bibliografia: test
  1. Salata, O. V. (2004) Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2, 3-9. otwiera się w nowej karcie
  2. SCENIHR. (2007) Scientific Committee on Emerging and Newly-Identified HealthRisks: The Existing and Proposed Definitions Relating to Products of Nanotechnologies. otwiera się w nowej karcie
  3. Imasaka, K., Kanatake, Y., Ohshiro, Y., Suehiro, J. and Harashima, H. (2006) Production of carbon nanoonions and nanotubes using an intermit- tent discharge in water. Thin Solid Films, 506, 250-254. otwiera się w nowej karcie
  4. Warner, J. H., Ito, Y., Zaka, M. et al. (2008) Rotating fullerene chains in carbon nanopeapods. Nano. Lett., 8, 2328-2335. otwiera się w nowej karcie
  5. Dandekar, P., Dhumal, R., Jain, R., Tiwari, D., Vanage, G. and Patravale, V. (2010) Toxicological evaluation of pH-sensitive nanoparticles of cur- cumin: acute, sub-acute and genotoxicity studies. Food Chem. Toxicol., 48, 2073-2089. otwiera się w nowej karcie
  6. Singh, N., Manshian, B., Jenkins, G. J. S., Griffiths, S. M., Williams, P. M., Maffeis, T. G. G., Wright, C. H. J. and Doak, S. H. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nano- materials. Biomaterials, 30, 3891-3914. otwiera się w nowej karcie
  7. Henig, R. M. (2007) Our silver-coated future. OnEarth, Fall, 22-29. otwiera się w nowej karcie
  8. Melayie, A., Sun, Z., Hindi, K., Milsted, A., Ely, D., Reneker, D. H., Tessier, C. A. and Youngs, W. J. (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc., 127, 2285-2291. otwiera się w nowej karcie
  9. Margaret, I. P., Lui, S. L., Poon, V. K., Lung, I. and Burd, A. (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J. Med. Microbiol., 55, 59-63.
  10. Vigneshawaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P. and Balasubramanya, R. H. (2007) Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol., 7, 1893-1897. otwiera się w nowej karcie
  11. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J. and Autrup, H. (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett., 190, 156-162. otwiera się w nowej karcie
  12. Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science, 311, 622-627. otwiera się w nowej karcie
  13. Vidal, A. E., Hickson, I. D., Boiteux, I. and Radicella, J. P. (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res., 29, 1285-1292. otwiera się w nowej karcie
  14. Matsukawa, K., Ogata, M., Hikage, T. et al. (2006) Antiproliferative activity of root extract from Gentian plant (Gentiana triflora) on cul- tured and implanted tumor cells. Biosci. Biotechnol. Biochem., 70, 1046-1048. otwiera się w nowej karcie
  15. Georgieva, E., Handjieva, N., Popov, S. and Evstatieva, L. (2005) Comparative analysis of the volatiles from flowers and leaves of three Gentiana species. Biochem. Syst. Ecol., 33, 938-947. otwiera się w nowej karcie
  16. Saric, M. (1989) Medicinal plants of SR Serbia, SASA, Belgrade, 9, 278 (in Serbian).
  17. Hudecova, A., Hasplova, K., Miadokova, E. et al. (2012) Gentiana ascle- piadea protects human cells against oxidation DNA lesions. Cell Biochem. Funct., 30, 101-107. otwiera się w nowej karcie
  18. Lankoff, A., Sandberg, W. J., Wegierek-Ciuk, A. et al. (2012) The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett., 208, 197-213. otwiera się w nowej karcie
  19. Collins, A., Dusinska, M., Gedik, A. C. and Stetina, R. (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ. Health Perspect., 104, 465-469. otwiera się w nowej karcie
  20. Collins, A. and Dusinska, M. (2009) Application of the comet assay in human monitoring. In Dhawan, A., Anderson, D. (eds), The Comet Assay in Toxicology. Royal Society of Chemistry, Cambridge, pp. 201-221. otwiera się w nowej karcie
  21. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J. and Hong, Y. (2008) DNA damage response to different surface chem- istry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol., 233, 404-410. otwiera się w nowej karcie
  22. Hsin, Y. H., Chen, C. H. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. (2008) The apoptic effect of nanosilver is mediated by ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett., 179, 130-139. otwiera się w nowej karcie
  23. Shin, S. H., Ye, M. K., Kim, S. H. and Kang, H. S. (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunophramacol., 7, 1813-1818. otwiera się w nowej karcie
  24. Cha, K., Wong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G. and Myung, H. (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett., 30, 1893-1899. otwiera się w nowej karcie
  25. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro, 19, 975-983. otwiera się w nowej karcie
  26. Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J. and Autrup, H. (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett., 190, 156-162. otwiera się w nowej karcie
  27. Wojewodzka, M., Lankoff, A., Dusinska, M., Brunborg, G., Czerwinska, J., Iwanenko, T., Stepkowski, T., Szumiel, I. and Kruszewski, M. (2011) Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleoinka, 56, 29-33.
  28. Dusinska, M. and Collins, A. (2008) The comet assay in human biomoni- toring: gene-environment interactions. Mutagenesis, 23, 191-205. otwiera się w nowej karcie
  29. Bjøras, M., Luna, L., Johnsen, B., Hoff, E., Haug, T., Rognes, T. and Seeberg, E. (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J., 16, 6314-6322. otwiera się w nowej karcie
  30. Morland, I., Rolseth, V., Luna, L., Rognes, T., Bjøras, M. and Seeberg, E. (2002) Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res., 30, 4926-4936. otwiera się w nowej karcie
  31. Szucs, Z., Danos, B. and Nyiredy, S. (2002) Comparative analysis of the underground parts of Gentiana species by HPLC with diode-array and mass spectrometric detection. Chromatographia, 56, 19-23. otwiera się w nowej karcie
  32. Jiang, R. W., Wong, K. L., Chan, Y. M., Xu, H. X., But, P. P. H. and Shaw, P. C. H. (2005) Isolation of iridoid and secoiridoid glycosides and comparative study on Radix gentianae and related adulterants by HPLC analysis. Phytochemistry, 66, 2674-2680. otwiera się w nowej karcie
  33. Dinda, B., Debnath, S. and Harigaya, Y. (2007) Naturally occuring secoiri- doids and bioactivity of naturally occuring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull., 55, 689-728. otwiera się w nowej karcie
  34. Hudecova, A., Hasplova, K., Miadokova, E., Magdolenova, Z., Rinna, A., Galova, E., Vaculcikova, D., Gregan, F. and Dusinska, M. (2010) Cytotoxic and genotoxic effect of methanolic flower extract from Gentiana asclepia- dea on COS 1 cells. Neuroendocrinol. Lett., 31, 21-25.
  35. Hudecova, A., Kusnierewicz, B., Hasplova, K., Huk, A., Magdolenova, Z., Miadokova, E., Galova, E. and Dusinska, M. (2012) Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxide- and silver nanoparticles-induced DNA damage. Food Chem. Toxicol., 50, 3352-3359. otwiera się w nowej karcie
  36. Kusznierewicz, B., Piasek, A., Bartoszek, A. and Namieśnik, J. (2011) The optimisation of analytical parameters for routine profiling of antioxi- dants in complex mixtures by HPLC coupled post-column derivatisation. Phytochem. Anal., 22, 392-402. otwiera się w nowej karcie
  37. Rao, B. S. S., Sreedevi, M. V. and Rao, B. N. (2011) Cytoprotective and antigenotoxic potential of Mangiferin, a glucosylxanthone against cad- mium chloride induced toxicity in HepG2 cells. Food Chem. Toxicol., 47, 592-600.
  38. Das, S., Rao, B. N. and Rao, B. S. S. (2011) Mangiferin attenuates methyl- mercury induced cytotoxicity against IMR-32, human neuroblastoma cells by the inhibition of oxidative stress and free radical scavenging potential. Chem. Biol. Interact., 193, 129-140. otwiera się w nowej karcie
  39. Zeraik, M. L., Serteyn, D., Deby-Dupont, G., Wauters, J. N., Tits, M., Yariwake, J. H., Angenot, L. and Franck, T. (2011) Evaluation of the anti- oxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays. Food Chem., 128, 259-265. otwiera się w nowej karcie
  40. Zielińska, D. and Zieliński, H. (2011) Antioxidant activity of flavone C-glucosides determined by updated analytical strategies. Food Chem., 124, 672-678. otwiera się w nowej karcie
  41. Jaishree, V. and Badami, S. (2010) Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J. Ethnopharmacol., 130, 103-106. otwiera się w nowej karcie
  42. Ozono, R. (2006) New biotechnological methods to reduce oxidative stress in the cardiovascular system: focusing on the Bach1/heme oxygenase-1 pathway. Curr. Pharm. Biotechnol., 7, 87-93. otwiera się w nowej karcie
  43. Kusar, A., Zupancic, A., Sentjurc, M. and Baricevic, D. (2006) Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance. Hum. Exp. Toxicol., 25, 599-604. otwiera się w nowej karcie
  44. Ozturk, N., Korkmaz, Y., Ozturk, Y. and Husnu Can Baser, K. (2006) Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. Symphyandra), on cultured chicken embryonic fibroblasts. Planta Med., 72, 289-294.
  45. Verschooten, L., Smaers, K., Kelst, S. V., Proby, C., Maes, D., Declercq, L., Agostinis, P. and Garmyn, M. (2010) The flavonoid luteolin increases the resistance of normal, but not malignant keratinocytes, against UVB-induced apoptosis. J. Invest. Dermatol., 130, 2277-2285. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 126 razy

Publikacje, które mogą cię zainteresować

Meta Tagi