Simplified AutoDock force field for hydrated binding sites - Publication - Bridge of Knowledge

Search

Simplified AutoDock force field for hydrated binding sites

Abstract

has been extracted from the Protein Data Bank and used to test and recalibrate AutoDock force field. Since for some binding sites water molecules are crucial for bridging the receptor-ligand interactions, they have to be included in the analysis. To simplify the process of incorporating water molecules into the binding sites and make it less ambiguous, new simple water model was created. After recalibration of the force field on the new dataset much better correlation between the computed and experimentally determined binding affinities was achieved and the quality of pose prediction improved even more

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 243 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF MOLECULAR GRAPHICS & MODELLING no. 78, pages 74 - 80,
ISSN: 1093-3263
Language:
English
Publication year:
2017
Bibliographic description:
Wojciechowski M.: Simplified AutoDock force field for hydrated binding sites// JOURNAL OF MOLECULAR GRAPHICS & MODELLING. -Vol. 78, (2017), s.74-80
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jmgm.2017.09.016
Bibliography: test
  1. G. Morris, R. Huey, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785-2791, https:// doi.org/10.1002/jcc.21256, (AutoDock4). open in new tab
  2. D. Santos-Martins, S. Forli, M.J. Ramos, A.J. Olson, AutoDock4Zn: An im- proved AutoDock force field for small-molecule docking to zinc metallopro- teins, J. Chem. Inf. Model. 54 (2014) 2371-2379, https://doi.org/10.1021/ ci500209e. open in new tab
  3. S. Uehara, S. Tanaka, AutoDock-GIST: Incorporating thermodynamics of ac- tive-site water into scoring function for accurate protein-ligand docking, Mole- cules 21 (2016) https://doi.org/10.3390/molecules21111604. open in new tab
  4. V.Y. Tanchuk, V.O. Tanin, A.I. Vovk, G. Poda, A new, improved hybrid scoring function for molecular docking and scoring based on AutoDock and AutoDock vina, Chem. Biol. Drug Des. 87 (2016) 618-625, https://doi.org/10.1111/cbdd. 12697. open in new tab
  5. R. Wang, X. Fang, Y. Lu, S. Wang, The PDBbind database: collection of bind- ing affinities for protein-ligand complexes with known three-dimensional struc- tures, J. Med. Chem. 47 (2004) 2977-2980, https://doi.org/10.1021/jm030580l. open in new tab
  6. L. Hu, M.L. Benson, R.D. Smith, M.G. Lerner, H.A. Carlson, Binding MOAD (Mother of all databases), Proteins Struct. Funct. Genet. 60 (2005) 333-340, https://doi.org/10.1002/prot.20512. open in new tab
  7. J. Yang, A. Roy, Y. Zhang, BioLiP: A semi-manually curated database for bio- logically relevant ligand-protein interactions, Nucleic Acids Res. 41 (2013) https://doi.org/10.1093/nar/gks966. open in new tab
  8. C.R. Corbeil, C.I. Williams, P. Labute, Variability in docking success rates due to dataset preparation, J. Comput. Aided Mol. Des. 26 (2012) 775-786, https:// doi.org/10.1007/s10822-012-9570-1. open in new tab
  9. P. Cozzini, M. Fornabaio, A. Marabotti, D.J. Abraham, G.E. Kellogg, A. Moz- zarelli, Free energy of ligand binding to protein: evaluation of the contribution of water molecules by computational methods, Curr. Med. Chem. 11 (2004) 3093-3118, https://doi.org/10.2174/0929867043363929. open in new tab
  10. S. Forli, A.J. Olson, A force field with discrete displaceable waters and desolva- tion entropy for hydrated ligand docking, J. Med. Chem. 55 (2012) 623-638, https://doi.org/10.1021/jm2005145. open in new tab
  11. F. Österberg, G.M. Morris, M.F. Sanner, A.J. Olson, D.S. Goodsell, Automated docking to multiple target structures: incorporation of protein mobility and struc- tural water heterogeneity in autodock, Proteins Struct. Funct. Genet. 46 (2002) 34-40, https://doi.org/10.1002/prot.10028. open in new tab
  12. H. Claußen, C. Buning, M. Rarey, T. Lengauer, FlexE: efficient molecular dock- ing considering protein structure variations1 1Edited by J. Thornton, J. Mol. Biol. 308 (2001) 377-395, https://doi.org/10.1006/jmbi.2001.4551. open in new tab
  13. A. Sali, T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol. 234 (1993) 779-815, https://doi.org/10.1006/jmbi.1993. 1626. open in new tab
  14. J.M. Word, S.C. Lovell, J.S. Richardson, D.C. Richardson, Asparagine and glut- amine: using hydrogen atom contacts in the choice of side-chain amide orienta- tion, J. Mol. Biol. 285 (1999) 1735-1747, https://doi.org/10.1006/jmbi.1998. 2401. open in new tab
  15. C.X. Weichenberger, M.J. Sippl, Self-consistent assignment of asparagine and glutamine amide rotamers in protein crystal structures, Structure 14 (2006) 967-972, https://doi.org/10.1016/j.str.2006.04.002. open in new tab
  16. M.M. Mysinger, M. Carchia, J.J. Irwin, B.K. Shoichet, Directory of useful de- coys, enhanced (DUD-E): Better ligands and decoys for better benchmarking, J. Med. Chem. 55 (2012) 6582-6594, https://doi.org/10.1021/jm300687e. open in new tab
  17. R. Wang, Y. Lu, X. Fang, S. Wang, An extensive test of 14 scoring functions us- ing the PDBbind refined set of 800 protein-ligand complexes, J. Chem. Inf. Comput. Sci. 44 (2004) 2114-2125, https://doi.org/10.1021/ci049733j. open in new tab
  18. D. Plewczynski, M. Łaźniewski, R. Augustyniak, K. Ginalski, Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database, J. Comput. Chem. 32 (2011) 742-755, https://doi.org/10.1002/jcc. 21643. open in new tab
  19. G.L. Warren, C.W. Andrews, A.M. Capelli, B. Clarke, J. LaLonde, M.H. Lam- bert, M. Lindvall, N. Nevins, S.F. Semus, S. Senger, G. Tedesco, I.D. Wall, J.M. Woolven, C.E. Peishoff, M.S. Head, A critical assessment of docking programs and scoring functions, J. Med. Chem. 49 (2006) 5912-5931, https://doi.org/10. 1021/jm050362n. open in new tab
  20. R. Kim, J. Skolnick, Assessment of programs for ligand binding affinity predic- tion, J. Comput. Chem. 29 (2008) 1316-1331, https://doi.org/10.1002/jcc.20893. open in new tab
  21. M.J. Hartshorn, M.L. Verdonk, G. Chessari, S.C. Brewerton, W.T.M. Mooij, P.N. Mortenson, C.W. Murray, Diverse, high-quality test set for the validation of protein-ligand docking performance, J. Med. Chem. 50 (2007) 726-741, https:// doi.org/10.1021/jm061277y. open in new tab
  22. J.C. Cole, C.W. Murray, J.W.M. Nissink, R.D. Taylor, R. Taylor, Comparing protein-ligand docking programs is difficult, Proteins Struct. Funct. Genet. 60 (2005) 325-332, https://doi.org/10.1002/prot.20497. open in new tab
  23. J.D. Hunter, Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9 (2007) 99-104, https://doi.org/10.1109/MCSE.2007.55. open in new tab
Verified by:
Gdańsk University of Technology

seen 105 times

Recommended for you

Meta Tags