Simulations of air and water flow in a model dike during overflow experiments - Publication - Bridge of Knowledge

Search

Simulations of air and water flow in a model dike during overflow experiments

Abstract

Flow in flood dikes, earth dams, and embankments occurs in variably saturated conditions, with pores of the earth material filled partly with water and partly with air. In routine engineering analysis, the influence of pore air is neglected and the air pressure is assumed equal to atmospheric. In some circumstances, for example, during overtopping of the dike by water, the effect of pore air on water flow and stability of the structure can be important. These features cannot be captured with the commonly used Richards equation. In this paper, we analyze earlier experiments on the overtopping of a model dike made of fine sand. During the experiments, a significant amount of air was trapped near the outer slope of the dike, which later escaped through a fracture formed in wet sand. The observations were compared with numerical simulations using the Richards equation and the two-phase immiscible flow model. The deformation and damage of the dike were not modelled, but the initial evolution of the entrapped air pressure (before damage occurred) was in a good agreement with two-phase flow simulations.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 33 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
COMPUTATIONAL GEOSCIENCES no. 23, pages 325 - 337,
ISSN: 1420-0597
Language:
English
Publication year:
2019
Bibliographic description:
Tisler W., Gorczewska-Langner W., Danuta L., Stanisław M., Ossowski R., Szymkiewicz A.: Simulations of air and water flow in a model dike during overflow experiments// COMPUTATIONAL GEOSCIENCES. -Vol. 23, iss. 2 (2019), s.325-337
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10596-018-9796-7
Bibliography: test
  1. Abo Elela, M.M.I.: Filtration phenomena in earth dike during intensive precipitation. PhD Thesis, Polish Academy of Sciences, Institute of Hydro-Engineering, Gdańsk, Poland (1996)
  2. Aubertin, M., Mbonimpa, M., Bussière, B., Chapuis, R.P.: A model to predict the water retention curve from basic geotechnical properties. Can. Geotech. J. 40(6), 1104-1122 (2003) open in new tab
  3. Banerjee, M., Singh, V.P., Singh, H.N., Shankar, D., Singh, U.S.: Ground rupturing due to entrapped air/gas in the unconfined zone. Int. J. Geosci. 1(03), 149 (2010) open in new tab
  4. Bogacz, P.: Degradation of flood embankments-results of observation of the destruction mechanism and comparison with a numerical model. Open Eng. 7(1), 237-243 (2017) open in new tab
  5. Bogacz, P., Kaczmarek, J., Leśniewska, D.: Influence of air entrapment on flood embankment failure mechanics-model tests. Technol. Sci. 11, 188-201 (2008) open in new tab
  6. Brinkgreve, R.B.J., Vermeer, P.A.: Plaxis manual, version 7, 5-1 (1998)
  7. Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media. Technical Report Hydrology Paper 3. Colorado State University, Fort Collins, Colorado, USA (1964) open in new tab
  8. Burdine, N.T.: Relative permeability calculations from pore size distribution data. Transactions of the American Institute of Mining. Min. Metall. Pet. Eng. 198, 71-77 (1953) open in new tab
  9. Chapuis, R.P.: Predicting the saturated hydraulic conductivity of soils: a review. Bull. Eng. Geol. Environ. 71(3), 401-434 (2012) open in new tab
  10. Delfs, J.O., Wang, W., Kalbacher, T., Singh, A.K., Kolditz, O.: A coupled surface/subsurface flow model accounting for air entrap- ment and air pressure counterflow. Environ. Earth Sci. 69(2), 395-414 (2013). https://doi.org/10.1007/s12665-013-2420-1 open in new tab
  11. Dunn, A.M., Silliman, S.E.: Air and water entrapment in the vicinity of the water table. Ground Water 41, 729-734 (2003) open in new tab
  12. Faybishenko, B.A.: Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res. 31(10), 2421-2435 (1995) open in new tab
  13. Gamnitzer, P., Hofstetter, G.: Fully coupled multi-phase modelling of pumping induced settlements, air-and water flow in multi- layered normally consolidated soils. Comput. Geotech. 79, 10-21 (2016) open in new tab
  14. Gawin, D., Baggio, P., Schrefler, B.A.: Coupled heat, water and gas flow in deformable porous media. Int. J. Numer. Methods Fluids 20(8-9), 969-987 (1995) open in new tab
  15. Gawin, D., Sanavia, L.: Simulation of cavitation in water saturated porous media considering effects of dissolved air. Transp. Porous Media 81(1), 141-160 (2010) open in new tab
  16. Hammecker, C., Antonino, A.C.D., Maeght, J.L., Boivin, P.: Experimental and numerical study of water flow in soil under irrigation in northern senegal: evidence of air entrapment. Eur. J. Soil Sci. 54(3), 491-503 (2003) open in new tab
  17. Helmig, R.: Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems. Springer, New York (1997) open in new tab
  18. Hsieh, P.A., Wingle, W.L., Healy, R.W.: VS2DI-A graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media (2000) open in new tab
  19. Huisman, J.A., Rings, J., Vrugt, J.A., Sorg, J., Vereecken, H.: Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. J. Hydrol. 380(1-2), 62-73 (2010) open in new tab
  20. Khoei, A.R., Mohammadnejad, T.: Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two-and three-phase models for seismic analysis of earth and rockfill dams. Comput. Geotech. 38(2), 142-166 (2011) open in new tab
  21. Kolditz, O., Görke, U.J., Shao, H., Wang, W. (eds.): Thermo- hydro-mechanical-chemical processes in porous media: bench- marks and examples (vol. 86). Springer Science & Business Media, Berlin (2012) open in new tab
  22. Kuang, X., Jiao, J.J., Wan, L., Wang, X., Mao, D.: Air And water flows in a vertical sand column. Water Resour Res. 47(4), W04506 (2011). https://doi.org/10.1029/2009WR009030 open in new tab
  23. Leśniewska, D., Bogacz, P., Kaczmarek, J., Zaradny, H.: Air trapping phenomenon and cracking. Model tests on flood embankment. Floodsite Project report: www.floodsite.net (2007) open in new tab
  24. Leśniewska, D., Zaradny, H., Bogacz, P., Kaczmarek, J.: Study of flood embankment behaviour induced by air entrapment. In: Samuels, P., Huntington, S., Allsop, W., Harrop, J. (eds.) Flood risk management: research and practice, pp. 655-665 (2008) open in new tab
  25. Leśniewska, D.: Mechanizm wewne ¸trznej erozji wałów prze- ciwpowodziowych w trakcie intensywnych powodzi. Materiały Budowlane 11, 19-22 (2013)
  26. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media (vol. 2). Wiley, Chichester (1998)
  27. Marinas, M., Roy, J.W., Smith, J.E.: Changes in entrapped gas content and hydraulic conductivity with pressure. Ground Water 51(1), 41-50 (2014). https://doi.org/10.1111/j.1745-6584.2012. 00915.x open in new tab
  28. McLeod, H.C., Roy, J.W., Smith, J.E.: Patterns of entrapped air dissolution in a two-dimensional pilot-scale synthetic aquifer. Ground Water 53(2), 271-281 (2015). https://doi.org/10.1111/ gwat.12203 open in new tab
  29. Melnikova, N.B., Krzhizhanovskaya, V.V., Sloot, P.M.: Modeling earthen dikes using real-time sensor data. J. Hydrol. 496, 154-165 (2013) open in new tab
  30. Mualem, Y.: A new model for predicting the hydraulic conduc- tivity of unsaturated porous media. Water Resour. Res. 12(3), 513-522 (1976). https://doi.org/10.1029/WR012i003p00513 open in new tab
  31. Pietruszczak, S., Pande, G.N.: Constitutive relations for partially saturated soils containing gas inclusions. J. Geotech. Eng. 122(1), 50-59 (1996) open in new tab
  32. Siemens, G.A., Take, W.A., Peters, S.B.: Physical and numerical modeling of infiltration including consideration of the pore-air phase. Can. Geotech. J. 51(12), 1475-1487 (2014) open in new tab
  33. Šimůnek, J., Van Genuchten, M.T., Sejna, M.: The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports 3, 1-240 (2005) open in new tab
  34. Stadler, L., Hinkelmann, R., Helmig, R.: Modeling macroporous soils with a two-phase dual-permeability model. Transp. Porous Media 95(3), 585-601 (2012) open in new tab
  35. Sun, D.M., Zang, Y.G., Semprich, S.: Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability. Transp. Porous Media 107(3), 821-841 (2015) open in new tab
  36. Szymańska, P., Tisler, W., Schütz, C., Szymkiewicz, A., Neuweiler, I., Helmig, R.: Experimental and numerical analysis of air trapping in a porous medium with coarse textured inclusions. Acta Geophysica 64(6), 2487-2509 (2016) open in new tab
  37. Szymkiewicz, A.: Modelling Water flow in unsaturated porous media: accounting for nonlinear permeability and material heterogeneity. Book Series: GeoPlanet: Earth and Planetary Sciences. Springer, Berlin (2013) open in new tab
  38. Szymkiewicz, A., Tisler, W., Burzyński, K.: Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes. Geologos 21(3), 161-167 (2015) open in new tab
  39. Szymkiewicz, A., Helmig, R., Kuhnke, H.: Two-phase flow in het- erogeneous porous media with non-wetting phase trapping. Trans- port Porous Med. 86(1), 27-47 (2011). https://doi.org/10.1007/ s11242-010-9604 open in new tab
  40. Szymkiewicz, A., Helmig, R., Neuweiler, I.: Upscaling unsatu- rated flow in binary porous media with air entry pressure effects. Water Resour. Res. 48(4), W04522 (2012). https://doi.org/10. 1029/2011WR010893 open in new tab
  41. Szymkiewicz, A., Kryczałło, A.: Obliczanie współczynnika filtracji piasków iżwirów na podstawie krzywej uziarnienia: przegla ¸d wzorów empirycznych. [Calculating permeability of sands and gravels based on granulometric curve: overview of empirical formulas]. In:żynieria Morska i Geotechnika, pp. 110- 121 (2011)
  42. Szymkiewicz, A., Neuweiler, I., Helmig, R.: Influence of heterogeneous air entry pressure on large scale unsaturated flow in porous media. Acta Geophys. 62(5), 1179-1191 (2014). https://doi.org/10.2478/s11600-014-0224-7 open in new tab
  43. Tisler, W., Szymkiewicz, A.: Numerical simulations of seepage in dike using unsaturated and two phase flow model. Dreg Dike Conference (2014) open in new tab
  44. Tisler, W., Szymkiewicz, A.: Influence of the air phase on water flow in dikes. In: E3s Web of Conferences (vol. 17, p. 00094). EDP Sciences (2017) open in new tab
  45. Touma, J., Vauclin, M.: Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transp. Porous Media 1(1), 27-55 (1986). https://doi.org/10.1007/BF01036524 open in new tab
  46. Touma, J., Vachaud, G., Parlange, J.-Y.: Air and water flow in a sealed, ponded vertical soil column: experiment and model. Soil Sci. 137(3), 181-187 (1984) open in new tab
  47. Vachaud, G., Vauclin, M., Khanji, D., Wakil, M.: Effects of air pressure on water flow in an unsaturated stratified vertical column of sand. Water Resour. Res. 9(1), 160-173 (1973). https://doi.org/ 10.1029/WR009i001p00160 open in new tab
  48. van Duijn, C.J., Eichel, H., Helmig, R., Pop, I.S.: Effective equations for two-phase flow in porous media: the effect of trapping at the micro-scale. Transp. Porous Media 69(3), 411-428 (2007). https://doi.org/10.1007/s11242-006-9089-9 open in new tab
  49. van Esch, J.M., Sellmeijer, J.B., Stolle, D.: Modeling transient groundwater flow and piping under dikes and dams. In: 3Rd International Symposium on Computational Geomechanics (Comgeo III) (vol. 9) (2013)
  50. van Genuchten, M.T.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892-898 (1980). https://doi.org/10.2136/sssaj1980. 03615995004400050002x open in new tab
  51. van Genuchten, M.V., Leij, F.J., Yates, S.R.: The RETC code for quantifying the hydraulic functions of unsaturated soils (1991)
  52. Vasin, M., Lehmann, P., Kaestner, A., Hassanein, R., Nowak, W., Helmig, R., Neuweiler, I.: Drainage in heterogeneous sand columns with different geometric structures. Adv. Water Resour. 31(9), 1205-1220 (2008). https://doi.org/10.1016/j.advwatres.2008.01.004 open in new tab
  53. Vuković, M., Soro, A.: Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Pubns (1992)
  54. Wang, Z., Feyen, J., Nielsen, D.R., Genuchten, M.T.: Two-phase flow infiltration equations accounting for air entrapment effects. Water Resour. Res. 33(12), 2759-2767 (1997) open in new tab
  55. Wang, Z., Feyen, J., Genuchten, M.T., Nielsen, D.R.: Air entrapment effects on infiltration rate and flow instability. Water Resour. Res. 34(2), 213-222 (1998) open in new tab
  56. Wheeler, S.J.: A conceptual model for soils containing large gas bubbles. Geotechnique 38(3), 389-397 (1988a) open in new tab
  57. Wheeler, S.J.: The undrained shear strength of soils containing large gas bubbles. Géotechnique 38(3), 399-413 (1988b) open in new tab
  58. Zaradny, H.: Experiment setup for simulation of the flow of water and pollutants. Report IBW PAN, 10 pp. 14 figs (1992) open in new tab
  59. Zaradny, H.: Physical modeling of infiltration into dikes for stability purposes. The second term. Report IBW PAN, Contract No. DWW-510 24 pp (1993)
  60. Zaradny, H.: Physical modelling of infiltration into dikes for stability purposes. The final report. Report IBW PAN, Contract No. DWW-510 29 pp (1994)
  61. Zaradny, H.: Entrapped air-reason for the unexpected pore pressure behaviour in levees and earth dams. In: Proceedings of XXVIII IAHR Congress-hydraulic engineering for sustainable water resources management at the turn of the millennium, Graz, Austria (p. 7) (1999)
  62. Zhang, X.Y., Zhu, Y.M., Fang, C.H.: The role of air flow in soil slope stability analysis. J. Hydrodyn. Ser. B 21(5), 640-646 (2009) open in new tab
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags