Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment - Publication - Bridge of Knowledge

Search

Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment

Abstract

Stress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature is introduced. In comparison with the conventional beam element, the vector of nodal displacement for the proposed element has one additional component indicating the nodal curvature to comply with the stress-driven nonlocal beam model. The nonlinear term associated with the von Kármán strain is included in the governing equation of motion and it is assumed that the nanotube structure is exposed to temperature changes and surrounded by a magnetic field. The obtained results endorsing the amplitude-dependence of the nonlinear frequencies are justified compared to those reported in the literature and a detailed study is conducted to explore the effect of different parameters on the vibrational behavior of the considered nano-hetero-structure.

Citations

  • 4 5

    CrossRef

  • 0

    Web of Science

  • 6 2

    Scopus

Cite as

Full text

download paper
downloaded 103 times
Publication version
Accepted or Published Version
License
Copyright (2020 IOP Publishing Ltd)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
PHYSICA SCRIPTA no. 95, pages 1 - 22,
ISSN: 0031-8949
Language:
English
Publication year:
2020
Bibliographic description:
Sedighi H. M., Malikan M.: Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment// PHYSICA SCRIPTA -Vol. 95,iss. 5 (2020), s.1-22
DOI:
Digital Object Identifier (open in new tab) 10.1088/1402-4896/ab7a38
Bibliography: test
  1. Ebrahimi, N., Tadi Beni, Y., Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory, Steel and Composite Structures, 22(6) (2016) 1301-1336. open in new tab
  2. Kheibari, F., Tadi Beni, Y., Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model, Materials & Design, 114 (2017) 572-583. open in new tab
  3. Fattahian Dehkordi, S., Tadi Beni, Y., Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory, International Journal of Mechanical Sciences, 128-129 (2017) 125-139. open in new tab
  4. Soleimani, S., Beni, Y.T., Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element, Archives of Civil and Mechanical Engineering, 18(4) (2018) 1345-1358. open in new tab
  5. Dumortier, H., Lacotte, S., Pastorin, G., Marega R., et al, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Letters, 6 (2006) 1522-1528. open in new tab
  6. Hernández-Acosta, M.A. et al, Fractional and chaotic electrical signatures exhibited by random carbon nanotube networks, Physica Scripta, 93 (2018) 125801. open in new tab
  7. Khosravi, Y. et al, Fabrication of a novel carbon nanotube & graphene based device for gas detection, Physica Scripta, 93 (2018) 065801. open in new tab
  8. Laurila, T., Hybrid carbon nanomaterials for electrochemical detection of biomolecules, Physica Scripta, 90 (2015) 094006. open in new tab
  9. Karimov, Kh.S. et al, A carbon nanotube-based pressure sensor, Physica Scripta, 83 (2011) 065703. open in new tab
  10. Nozaki, H., Itho, S., Lattice dynamics of a layered material BC2N, Physica B, 219-220 (1996) 487-489. open in new tab
  11. Stephan, O., Ajayan, P.M., Colliex, C., Redlich, P., Lambert, J.M., Bernier, P., Lefin, P., Doping graphitic and carbon nanotube structures with boron and nitrogen, Science, 266 (1994) 1683-1685. open in new tab
  12. Dumortier, H., Lacotte, S., Pastorin, G., Marega R., et al, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Letters, 6 (2006) 1522-1528. open in new tab
  13. Suryavanshi, A. P., Yu, M. F., Wen, J., Tang, C., Bando, Y., Elastic modulus and resonance behavior of boron nitride nanotubes, Applied Physics Letters, 84 (2004) 2527-2529. open in new tab
  14. Chen, Y., Zou, J., Campbell, S. J., Le Caer, G., Boron nitride nanotubes: Pronounced resistance to oxidation, Applied Physics Letters, 84 (2004) 2430-2432. open in new tab
  15. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A., Boron nitride nanotubes: An innovative tool for nanomedicine, Nano Today, 4 (2009) 8-10. open in new tab
  16. Ciofani, G., Danti, S., Nitti S., et al, Biocompatibility of boron nitride nanotubes: an up-date of in vivo toxicological investigation, International Journal of Pharmaceutics, 444 (2013) 85-88. open in new tab
  17. Han, W.-Q., Mickelson, W., Cumings, J., Zettl, A., Transformation of Bx Cy Nz nanotubes to pure BN nanotubes, Applied Physics Letters, 81 (2002) 1110. open in new tab
  18. Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., Boron Nitride Nanotubes, Science, 269 (1995) 966-967. open in new tab
  19. Iijima, S., Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 (1993) 603-605. open in new tab
  20. Pumera, M., Miyahara, Y., What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?, Nanoscale, 1 (2009) 260-265. open in new tab
  21. Diana, S., Janet, H., James, W., Marisabel, L.-C., Hybrid Boron Nitride Nanotubes -Carbon Nanostructures Supercapacitor with High Energy Density, (2012) E-663225, NASA Headquarters;
  22. Washington, DC, United States. open in new tab
  23. Rodríguez Juárez, A., Chigo Anota, Hernández Cocoletzi, H., Sánchez Ramírez, J.F., Castro, M., Stability and electronic properties of armchair boron nitride/carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures, 25(12) (2017) 716-725. open in new tab
  24. Xiao, H., Zhang, C.X., Zhang, K.W., Sun, L.Z., Zhong, J.X., Tunable differential conductance of single wall C/BN nanotube heterostructure, Journal of Molecular Modeling, 19 (2013) 2965-2969. open in new tab
  25. Zhang, J., Wang, C.Y., Beat vibration of hybrid boron nitride-carbon nanotubes -A new avenue to atomicscale mass sensing, Computational Materials Science, 127 (2017) 270-276. open in new tab
  26. Vedaei, S.S., Nadimi, E., Gas sensing properties of CNT-BNNT-CNT nanostructures: A first principles study, Applied Surface Science, 470 (2019) 933-942. open in new tab
  27. Chen, X. K., Xie, Z. X., Zhang, Y., Deng, Y. X., Zou, T. H., Liu, J., Chen, K. Q., Highly efficient thermal rectification in carbon/boron nitride Heteronanotubes, Carbon, 148 (2019) 532-539. open in new tab
  28. Badjian, H., Setoodeh, A. R., Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating -A molecular dynamics study, Physica B: Condensed Matter, 507 (2017) 156-163. open in new tab
  29. Genoese, Al., Genoese, An., Salerno, G., On the nanoscale behaviour of single-wall C, BN and SiC nanotubes, Acta Mechanica, (2019), https://doi.org/10.1007/s00707-018-2336-7. open in new tab
  30. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E., Abdraboh, A.M., Modal participation of fixed-fixed single-walled carbon nanotube with vacancies, International Journal of Advanced Structural Engineering, 11 (2019) 151- 163. open in new tab
  31. Kiani, K., Pakdaman, H., On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes, Physica Scripta, 95 (2020) 035221. open in new tab
  32. Salamat, D., Sedighi, H.M., The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle, Journal of Applied and Computational Mechanics, 3 (2017) 208-217.
  33. Sedighi, H.M., Yaghootian, A., Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity, Journal of Applied Mechanics and Technical Physics, 57 (2016) 90-100. open in new tab
  34. Choyal, V.K., Choyal, V., Nevhal, S., Bergaley, A., Kundalwal, S.I., Effect of aspects ratio on Young's modulus of boron nitride nanotubes: A molecular dynamics study, Materials Today: Proceedings, (2019), https://doi.org/10.1016/j.matpr.2019.05.347 open in new tab
  35. Ramezannejad Azarboni, H., Magneto-thermal primary frequency response analysis of carbon nanotube considering surface effect under different boundary conditions, Composites Part B: Engineering, 165 (2019) 435-441.
  36. Karami, B., Janghorban, M., On the dynamics of porous nanotubes with variable material properties and variable thickness, International Journal of Engineering Science, 136 (2019) 53-66. open in new tab
  37. Zhu, B., Chen, X., Dong, Y., Li, Y., Stability analysis of cantilever carbon nanotubes subjected to partially distributed tangential force and viscoelastic foundation, Applied Mathematical Modelling, 73 (2019) 190-209. open in new tab
  38. Hołubowski, R., Glabisz, W., Jarczewska, K., Transverse vibration analysis of a single-walled carbon nanotube under a random load action, Physica E, 109 (2019) 242-247. open in new tab
  39. Zhen, Y.-X., Wen, S.-L., Tang, Y., Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model, Physica E, 105 (2019) 116-124. open in new tab
  40. Narendar, S., Gupta, S.S., Gopalakrishnan, S., Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modelling, 36 (2012) 4529-4538. open in new tab
  41. Romano, G., Barretta, R., Nonlocal elasticity in nanobeams: the stress-driven integral model, International Journal of Engineering Science, 115 (2017) 14-27. open in new tab
  42. Barretta, R., Canadija, M., Feo, L., et al. Exact solutions of inflected functionally graded nano-beams in integral elasticity, Composites Part B: Engineering, 142 (2018) 273-286. open in new tab
  43. Barretta, R., Fabbrocino, F., Luciano, R., et al. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams, Physica E, 97 (2018) 13-30. open in new tab
  44. Wang, L., Ni, Q., Li, M., Qia, Q., The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Physica E, 40 (2008) 3179-3182. open in new tab
  45. Numanoğlu, H.M., Akgöz, B., Civalek, O., On dynamic analysis of nanorods, International Journal of Engineering Science, 130 (2018) 33-50. open in new tab
  46. Demir, C., Civalek, O., On the analysis of microbeams, International Journal of Engineering Science, 121 (2017) 14-33. open in new tab
  47. Civalek, O. Demir, C., Buckling and bending analyses of cantilever carbon nanotubes using the Euler-bernoulli beam theory based on non-local continuum model, Asian Journal of Civil Engineering, 12(5) (2011) 651-661. open in new tab
  48. Civalek, O., Demir, C., Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modelling, 35(5) (2011) 2053-2067. open in new tab
  49. Li, L., Hu, Y., Li, X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, 115-116 (2016) 135-144. open in new tab
  50. Barretta, R., Faghidian, S.A., Luciano, R., Longitudinal vibrations of nano-rods by stress-driven integral elasticity, Mechanics of Advanced Materials and Structures, 26(15) (2019) 1307-1315. open in new tab
  51. Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F., Medaglia, C.M., A stress-driven local-nonlocal mixture model for Timoshenko nano-beams, Composites Part B: Engineering, 164 (2019) 590-598. open in new tab
  52. Barretta, R., Marotti de Sciarra, F., Axial and flexional behaviour of elastic nano-beams by stress-driven two-phase elasticity, Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications - Proceedings of the 7th International Conference on Structural Engineering, Mechanics and Computation, (2019) 486-491. open in new tab
  53. Barretta, R., Fabbrocino, F., Luciano, R., de Sciarra, F.M., Ruta, G., Buckling loads of nano-beams in stress-driven nonlocal elasticity, Mechanics of Advanced Materials and Structures, (2019) DOI: 10.1080/15376494.2018.1501523 open in new tab
  54. Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R., Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models, Composites Part B: Engineering, 154 (2018) 20-32. open in new tab
  55. BHashyam, G.R., Prathap, G., Galerkin finite element method for nonlinear beam vibrations, Journal of Sound and Vibration, 72 (1980) 191-203. open in new tab
  56. Evensen, D.A., Nonlinear vibrations of beams with various boundary conditions, AIAA Journal, 6 (1968) 370-372. open in new tab
  57. Cheng, Q., Liu, Y.S., Wang, G.C., Liu, H., Jin, M.G., Li, R., Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube, Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 183-190. open in new tab
Verified by:
Gdańsk University of Technology

seen 91 times

Recommended for you

Meta Tags