Structural, functional, and stability change predictions in human telomerase upon specific point mutations, - Publication - Bridge of Knowledge

Search

Structural, functional, and stability change predictions in human telomerase upon specific point mutations,

Abstract

Overexpression of telomerase is one of the hallmarks of human cancer. Telomerase is important for maintaining the integrity of the ends of chromosomes, which are called telomeres. A growing number of human disease syndromes are associated with organ failure caused by mutations in telomerase (hTERT or hTR). Mutations in telomerase lead to telomere shortening by decreasing the stability of the telomerase complex, reducing its accumulation, or directly affecting its enzymatic activity. In this work, potential human telomerase mutations were identified by a systematic computational approach. Moreover, molecular docking methods were used to predict the effects of these mutations on the affinity of certain ligands (C_9i, C_9k, 16A, and NSC749234). The C_9k inhibitor had the best binding affinity for wild-type (WT) telomerase. Moreover, C_9i and C_9k had improved interactions with human telomerase in most of the mutant models. The R631 and Y717 residues of WT telomerase formed interactions with all studied ligands and these interactions were also commonly found in most of the mutant models. Residues forming stable interactions with ligands in molecular dynamics (MD) were traced, and the MD simulations showed that the C_9k ligand formed different conformations with WT telomerase than the C_9i ligand.

Citations

  • 2 3

    CrossRef

  • 0

    Web of Science

  • 2 2

    Scopus

Cite as

Full text

download paper
downloaded 31 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Scientific Reports no. 9, pages 1 - 13,
ISSN: 2045-2322
Language:
English
Publication year:
2019
Bibliographic description:
Kalathiya U., Padariya M., Bagiński M.: Structural, functional, and stability change predictions in human telomerase upon specific point mutations,// Scientific Reports -Vol. 9, (2019), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-019-45206-y
Bibliography: test
  1. Shay, J. W. & Wright, W. E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol. 21, 349-353 (2011). open in new tab
  2. Blackburn, E. H. Telomeres: no end in sight. Cell 77, 621-623 (1994). open in new tab
  3. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43, 405-413 (1985). open in new tab
  4. Wright, W. & Hayflick, L. Nuclear control of cellular aging demonstrated by hybridization of anucleate and whole cultured normal human fibroblasts. Exp. Cell Res. 96, 113-121 (1975). open in new tab
  5. Wright, W. E. & Shay, J. W. Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr. Opin. Genet. Dev. 11, 98-103 (2001). open in new tab
  6. Bodnar, A. G. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349-352 (1998). open in new tab
  7. Campisi, J., Kim, S., Lim, C. & Rubio, M. Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol. 36, 1619-1637 (2001). open in new tab
  8. Shay, J. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787-791 (1997). open in new tab
  9. Hahn, W. C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164-1170 (1999). open in new tab
  10. Zhang, X., Mar, V., Zhou, W., Harrington, L. & Robinson, M. O. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 13, 2388-2399 (1999). open in new tab
  11. Gillis, A. J., Schuller, A. P. & Skordalakes, E. Structure of the tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633-637 (2008). open in new tab
  12. Fogarty, P. F. et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 362, 1628-1630 (2003). open in new tab
  13. Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Eng. J. Med. 356, 1317-1326 (2007). open in new tab
  14. Vulliamy, T. J. Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107, 2680-2685 (2006). open in new tab
  15. Kelleher, C., Teixeira, M., Förstemann, K. & Lingner, J. Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem. Sci. 27, 572-579 (2002). open in new tab
  16. Autexier, C. & Lue, N. F. The Structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493-517 (2006). open in new tab
  17. Wyatt, H. D., West, S. C. & Beattie, T. L. In TERTpreting telomerase structure and function. Nucleic Acids Res. 38, 5609-5622 (2010). open in new tab
  18. Sekaran, V. G., Soares, J. & Jarstfer, M. B. Structures of telomerase subunits provide functional insights. Biochim. Biophys. Acta Proteins Proteom. 1804, 1190-1201 (2010). open in new tab
  19. Steczkiewicz, K. et al. Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step. Proc. Natl. Acad. Sci. USA 108, 9443-9448 (2011). open in new tab
  20. Xia, J., Peng, Y., Mian, I. S. & Lue, N. F. Identification of functionally important domains in the N-Terminal region of telomerase reverse transcriptase. Mol. Cell Biol. 20, 5196-5207 (2000). open in new tab
  21. Ji, H., Platts, M. H., Dharamsi, L. M. & Friedman, K. L. Regulation of telomere length by an N-terminal region of the yeast telomerase reverse transcriptase. Mol. Cell Biol. 25, 9103-9114 (2005). open in new tab
  22. Bosoy, D., Peng, Y., Mian, I. S. & Lue, N. F. Conserved N-terminal motifs of telomerase reverse transcriptase required for ribonucleoprotein assembly in Vivo. J. Biol. Chem. 278, 3882-3890 (2002). open in new tab
  23. Moriarty, T. J., Huard, S., Dupuis, S. & Autexier, C. Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol. Cell Biol. 22, 1253-1265 (2002). open in new tab
  24. Banik, S. S. et al. C-terminal regions of the human telomerase catalytic subunit essential for In Vivo enzyme activity. Mol. Cell Biol. 22, 6234-6246 (2002). open in new tab
  25. Lue, N. F., Lin, Y. & Mian, I. S. A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol. Cell Biol. 23, 8440-8449 (2003). open in new tab
  26. Lingner, J. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561-567 (1997). open in new tab
  27. Bosoy, D. & Lue, N. F. Functional analysis of conserved residues in the putative "Finger" domain of telomerase reverse transcriptase. J. Biol. Chem. 276, 46305-46312 (2001). open in new tab
  28. Xin, Z. et al. Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood 109, 524-532 (2007). open in new tab
  29. Dokal, I. & Vulliamy, T. Dyskeratosis congenita: its link to telomerase and aplastic anaemia. Blood Rev. 17, 217-225 (2003). open in new tab
  30. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Eng. J. Med. 352, 1413-1424 (2005). open in new tab
  31. Vulliamy, T. J. et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis. 34, 257-263 (2005). open in new tab
  32. Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat. Struct. Mol. Biol. 17, 513-518 (2010). open in new tab
  33. Kalathiya, U., Padariya, M. & Baginski, M. Molecular modeling and evaluation of novel dibenzopyrrole derivatives as telomerase inhibitors and potential drug for cancer therapy. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 1196-1207 (2014). open in new tab
  34. Luo, Y. et al. Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors. Bioorg. Med. Chem. Lett. 23, 1091-1095 (2013). open in new tab
  35. Zhang, Y. et al. Design, synthesis and biological evaluation of heterocyclic azoles derivatives containing pyrazine moiety as potential telomerase inhibitors. Bioorg. Med. Chem. 20, 6356-6365 (2012). open in new tab
  36. Chen, C. et al. Structure-based design, synthesis and evaluation of novel anthra[1,2-d]imidazole-6,11-dione derivatives as telomerase inhibitors and potential for cancer polypharmacology. Eur. J. Med. Chem. 60, 29-41 (2013). open in new tab
  37. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M. & Bairoch, A. UniProtKB/Swiss-Prot. Plant Bioinform. 406, 89-112 (2007). open in new tab
  38. Long, W. F. & Labute, P. Calibrative approaches to protein solubility modeling of a mutant series using physicochemical descriptors. J. Comput. Aided Mol. Des. 24, 907-916 (2010). open in new tab
  39. Ginalski, K., von Grotthuss, M., Grishin, N. V. & Rychlewski, L. Detecting distant homology with Meta-BASIC. Nucleic Acids Res. 32, W576-W581 (2004). open in new tab
  40. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1-5.6.37 (2016). open in new tab
  41. Spassov, V. Z., Yan, L. & Flook, P. K. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions. Protein Sci. 16, 494-506 (2007). open in new tab
  42. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545-614 (2009).
  43. Wu, G., Robertson, D. H., Brooks, C. L. & Vieth, M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER-a CHARMm-based MD docking algorithm. J. Comput. Chem. 24, 1549-1562 (2003). open in new tab
  44. Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Disc. 3, 935-949 (2004). open in new tab
  45. Wojciechowski, M. & Lesyng, B. Generalized born model: analysis, refinement, and applications to proteins. J. Phys. Chem. B 108, 18368-18376 (2004). open in new tab
  46. Labute, P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using london dispersion instead of atomic surface area. J. Comput. Chem. 29, 1693-1698 (2008). open in new tab
  47. Hess, B., Kutzner, C., Spoel, D. V. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435-447 (2008). open in new tab
  48. Schuler, L. D., Daura, X. & Gunsteren, W. F. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22, 1205-1218 (2001). open in new tab
  49. Schüttelkopf, A. W. & Aalten, D. M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 60, 1355-1363 (2004). open in new tab
  50. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem. Phys. 98, 10089-10092 (1993). open in new tab
  51. Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463-1472 (1997). open in new tab
  52. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). open in new tab
  53. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182-7190 (1981). open in new tab
  54. Gunsteren, W. F. & Berendsen, H. J. A Leap-frog algorithm for stochastic dynamics. Mol Simul. 1, 173-185 (1988). (2019) 9:8707 | https://doi.org/10.1038/s41598-019-45206-y www.nature.com/scientificreports open in new tab
  55. Kollman, P. A. et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889-897 (2000). open in new tab
  56. Kumari, R., Kumar, R. & Lynn, A. G_mmpbsa -a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951-1962 (2014). open in new tab
  57. Amadei, A., Linssen, A. B. & Berendsen, H. J. Essential dynamics of proteins. Proteins 17, 412-425 (1993). open in new tab
  58. Aalten, D., Findlay, J., Amadei, A. & Berendsen, H. Essential dynamics of the cellular retinol-binding protein evidence for ligand- induced conformational changes. Protein Eng. Des. Sel. 8, 1129-1135 (1995). open in new tab
  59. Drosopoulos, W. C. & Prasad, V. R. The active site residue Valine 867 in human telomerase reverse transcriptase influences nucleotide incorporation and fidelity. Nucleic Acids Res. 35, 1155-1168 (2007). open in new tab
  60. Smith, R. A., Anderson, D. J. & Preston, B. D. Hypersusceptibility to substrate analogs conferred by mutations in human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 80, 7169-7178 (2006). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 120 times

Recommended for you

Meta Tags