Structural optimization of microjet array cooling system - Publication - Bridge of Knowledge

Search

Structural optimization of microjet array cooling system

Abstract

The single phase heat transfer from an upward facing, horizontal copper surface to arrays of impinging water jets was experimentally investigated. Experimental configuration allows for a free-surface unconfined jets flow. Square nozzles 50 × 100 μm arranged in four different geometries were used. Additionally, for the set of two jets array geometry was varied by adjusting the nozzle to nozzle distance. The area averaged heat transfer coefficient was found to be a strong function of working fluid mass flux and array geometrical aspect ratio. The proposed correlation agreed with the experimental data within 30% error bounds Obtained database of experimental data with analytical correlation allows the rational design of microjet modules for various industrial applications.

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 2 4

    Scopus

Cite as

Full text

download paper
downloaded 105 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
APPLIED THERMAL ENGINEERING no. 123, pages 103 - 110,
ISSN: 1359-4311
Language:
English
Publication year:
2017
Bibliographic description:
Muszyński T., Mikielewicz D.: Structural optimization of microjet array cooling system// APPLIED THERMAL ENGINEERING. -Vol. 123, (2017), s.103-110
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.applthermaleng.2017.05.082
Bibliography: test
  1. T. Muszynski, S.M. Koziel, Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator, Arch. Thermodyn. 37 (2016) 45-62. doi:10.1515/aoter-2016-0019. open in new tab
  2. P. Smakulski, S. Pietrowicz, A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques, Appl. Therm. Eng. 104 (2016) 636-646. doi:10.1016/j.applthermaleng.2016.05.096. open in new tab
  3. Z. Meng, Z. Meng, W. Lu, Z. Zhu, Y. Sun, Research on heat exchange and control method of the evaporative condenser in the equipment of flax fiber modification, Appl. Therm. Eng. 100 (2016) 595-601. doi:10.1016/j.applthermaleng.2016.02.011. open in new tab
  4. R.S. Andhare, A. Shooshtari, S. V. Dessiatoun, M.M. Ohadi, Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration, Appl. Therm. Eng. 96 (2016) 187-189. doi:10.1016/j.applthermaleng.2015.10.133. open in new tab
  5. G.J. Michna, E.A. Browne, Y. Peles, M.K. Jensen, The effect of area ratio on microjet array heat transfer, Int. J. Heat Mass Transf. 54 (2011) 1782-1790. doi:10.1016/j.ijheatmasstransfer.2010.12.038. open in new tab
  6. T. Muszynski, D. Mikielewicz, Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100, Appl. Therm. Eng. 93 (2016) 1403-1409. doi:10.1016/j.applthermaleng.2015.08.107. open in new tab
  7. T. Muszynski, R. Andrzejczyk, Heat transfer characteristics of hybrid microjet - Microchannel cooling module, Appl. Therm. Eng. 93 (2016) 1360-1366. doi:10.1016/j.applthermaleng.2015.08.085. open in new tab
  8. A. Husain, M. Ariz, N.Z.H. Al-Rawahi, M.Z. Ansari, Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink, Appl. Therm. Eng. 102 (2016) 989-1000. doi:10.1016/j.applthermaleng.2016.03.048. open in new tab
  9. C.Y. Li, S. V. Garimella, Prandtl-number effects and generalized correlations for confined and submerged jet impingement, Int. J. Heat Mass Transf. 44 (2001) 3471- 3480. doi:10.1016/S0017-9310(01)00003-5. open in new tab
  10. L. Qiu, S. Dubey, F.H. Choo, F. Duan, The jet impingement boiling heat transfer with ad hoc wall thermal boundary conditions, Appl. Therm. Eng. 108 (2016) 456-465. doi:10.1016/j.applthermaleng.2016.07.134. open in new tab
  11. R. Andrzejczyk, T. Muszynski, C. Alberto Dorao, Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5mm diameter channel, Exp. Therm. Fluid Sci. 83 (2017) 78-87. doi:10.1016/j.expthermflusci.2016.12.016. open in new tab
  12. L. Qiu, S. Dubey, F.H. Choo, F. Duan, Recent developments of jet impingement nucleate boiling, Int. J. Heat Mass Transf. 89 (2015) 42-58. doi:10.1016/j.ijheatmasstransfer.2015.05.025. open in new tab
  13. E.A. Browne, G.J. Michna, M.K. Jensen, Y. Peles, Microjet array single-phase and flow boiling heat transfer with R134a, Int. J. Heat Mass Transf. 53 (2010) 5027-5034. doi:10.1016/j.ijheatmasstransfer.2010.07.062. open in new tab
  14. B.P. Whelan, A.J. Robinson, Nozzle geometry effects in liquid jet array impingement, Appl. Therm. Eng. 29 (2009) 2211-2221. doi:10.1016/j.applthermaleng.2008.11.003. open in new tab
  15. D.R.H. Gillespie, Z. Wang, P.T. Ireland, S.T. Kohler, Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry, J. Turbomach. 120 (1998) 92-99. open in new tab
  16. T. Muszynski, R. Andrzejczyk, Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers, Appl. Therm. Eng. 100 (2016) 105- 113. doi:10.1016/j.applthermaleng.2016.01.120. open in new tab
  17. T. Muszynski, Design And Experimental Investigations Of A Cylindrical Microjet Heat Exchanger For Waste Heat Recovery Systems, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.01.021. open in new tab
  18. N. Tran, Y.-J. Chang, J.-T. Teng, R. Greif, Enhancement heat transfer rate per unit volume of microchannel heat exchanger by using a novel multi-nozzle structure on cool side, Int. J. Heat Mass Transf. 109 (2017) 1031-1043. doi:10.1016/j.ijheatmasstransfer.2017.02.058. open in new tab
  19. N. Karwa, C. Stanley, H. Intwala, G. Rosengarten, Development of a low thermal resistance water jet cooled heat sink for thermoelectric refrigerators, Appl. Therm. Eng. 111 (2017) 1596-1602. doi:10.1016/j.applthermaleng.2016.06.118. open in new tab
  20. B.N. Taylor, C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, (n.d.). open in new tab
  21. D. Mikielewicz, T. Muszynski, Comparison of Heat Transfer Characteristics in Surface Cooling With Boiling Microjets of Water , Ethanol and, in: Janusz T. Cieśliński (Ed.), XXI Int. Symp. Reserch-Education-Technology, Gdansk University of Technology, 2013: pp. 1-9.
  22. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0, Phys. Chem. Prop. …. (2010).
Verified by:
Gdańsk University of Technology

seen 106 times

Recommended for you

Meta Tags