Study on Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of P91 Steel and INCOLOY 800HT Nickel Alloy - Publication - Bridge of Knowledge

Search

Study on Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of P91 Steel and INCOLOY 800HT Nickel Alloy

Abstract

This investigation attempts to explore the weld characteristics of a laser welded dissimilar joint of ferritic/martensitic 9Cr-1Mo-V-Nb (P91) steel and Incoloy 800HT austenitic nickel alloy. This dissimilar joint is essential in power generating nuclear and thermal plants operating at 600–650 °C. In such critical operating conditions, it is essential for a dissimilar joint to preserve its characteristics and be free from any kind of defect. The difference between the physical properties of P91 and Incoloy 800HT makes their weldability challenging. Thus, the need for detailed characterization of this dissimilar weld arises. The present work intends to explore the usage of an unconventional welding process (i.e., laser beam welding) and its effect on the joint’s characteristics. The single-pass laser welding technique was employed to obtain maximum penetration through the keyhole mode. The welded joint morphology and mechanical properties were studied in as-welded (AW) and post-weld heat treatment (PWHT) conditions. The macro-optical examination shows the complete penetrations with no inclusion and porosities in the weld. The microstructural study was done in order to observe the precipitation and segregation of elements in dendritic and interface regions. Solidification cracks were observed in the weld fusion zone, confirming the susceptibility of Incoloy 800HT to such cracks due to a mismatch between the melting point and thermal conductivity of the base metals. Failure from base metal was observed in tensile test results of standard AW specimen with a yield stress of 265 MPa, and after PWHT, the value increased to 297 MPa. The peak hardness of 391 HV was observed in the P91 coarse grain heat-affected zone (CGHAZ), and PWHT confirmed the reduction in hardness. The impact toughness results that were obtained were inadequate, as the maximum value of impact toughness was obtained for AW P91 heat-affected zone (HAZ) 108 J and the minimum for PWHT Incoloy 800HT HAZ 45 J. Thus, difficulty in obtaining a dissimilar joint with Incoloy 800HT using the laser beam welding technique was observed due to its susceptibility to solidification cracking.

Citations

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 2 3

    Scopus

Authors (4)

  • Photo of  Vishwa Bhanu

    Vishwa Bhanu

    • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur N.H. 62, Nagaur Road, Karwar, Jodhpur 342037, India
  • Photo of  Ankur Gupta

    Ankur Gupta

    • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur N.H. 62, Nagaur Road, Karwar, Jodhpur 342037, India
  • Photo of  Chandan Pandey

    Chandan Pandey

    • Department of Mechanical Engineering, Indian Institute of Technology Jodhpur N.H. 62, Nagaur Road, Karwar, Jodhpur 342037, India

Cite as

Full text

download paper
downloaded 28 times
Publication version
Accepted or Published Version
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma14195876
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 14,
ISSN: 1996-1944
Language:
English
Publication year:
2021
Bibliographic description:
Bhanu V., Fydrych D., Gupta A., Pandey C.: Study on Microstructure and Mechanical Properties of Laser Welded Dissimilar Joint of P91 Steel and INCOLOY 800HT Nickel Alloy// Materials -Vol. 14,iss. 19 (2021), s.5876-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma14195876
Verified by:
Gdańsk University of Technology

seen 54 times

Recommended for you

Meta Tags