Synergistic effects of a swirl generator and MXene/ water nanofluids used in a heat exchanger pipe of a negative CO2 emission gas power plant - Publication - Bridge of Knowledge

Search

Synergistic effects of a swirl generator and MXene/ water nanofluids used in a heat exchanger pipe of a negative CO2 emission gas power plant

Abstract

focus on optimizing heat exchangers contributes to improved temperature control mechanisms, ensuring the sustainable operation of innovative power plants working towards negative CO2 emissions. In the realm of oxy-combustion within Negative CO2 Emission Power Plants (nCO2PP), the temperature of combustion products surpasses 3000 (K). Addressing this challenge, the imperative arises to reduce these elevated temperatures to a manageable 1100(°C). This critical cooling process is achieved through the injection of water, facilitated by the implementation of heat exchangers. The study delves into the optimization of heat transfer within the heat exchanger pipe, specifically tailored for the context of a Negative CO2 Emission Power Plant. Employing a numerical simulation, the investigation explores the impact of vortex generator geometry, vane angles, single and dual propeller-type swirl generators, and the integration of a novel class of fluid, MXene/water nanofluid. Initially, the study scrutinizes propeller-type geometry at vane angles spanning from 15 to 60 degrees. The enhanced swirl flow associated with lower vane angles leads to improved fluid mixing, fostering more effective heat transfer. Results showed that the 15-degree vane angle, with a wider circumferential coverage, may result in increased wall contact, influencing heat transfer efficiency. Subsequently, at Re=6000, incremental rates of the Nusselt number ((〖Nu〗_n-〖Nu〗_s)/〖Nu〗_s %), for θ=15, 30, 45, and 60 degrees are 175.1%, 108.8%, 90.7%, and 40.3%, respectively. Also, the increment rates of Friction Factor (f_n/f_s ) for aforementioned vane angle are 38.48%, 9.26%, 4.08%, and 2.42%, respectively. In addition, for ∅_MXene=0.5 %, the Nusselt number experiences considerable increments of 22.94%, 24.17%, 24.70%, and 24.707% at Reynolds numbers of 6000, 12000, 18000, and 24000, respectively, compared to pure water, emphasizing the potential of MXene to enhance heat transfer efficiency.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
ISSN: 1040-7782
Language:
English
Publication year:
2024
Bibliographic description:
Amiri M., Ziółkowski P., Mikielewicz D.: Synergistic effects of a swirl generator and MXene/ water nanofluids used in a heat exchanger pipe of a negative CO2 emission gas power plant// NUMERICAL HEAT TRANSFER PART A-APPLICATIONS -, (2024),
DOI:
Digital Object Identifier (open in new tab) 10.1080/10407782.2024.2368277
Sources of funding:
  • COST_FREE
Verified by:
Gdańsk University of Technology

seen 5 times

Recommended for you

Meta Tags