Syntheses and Structures of Transition Metal Complexes with Phosphanylphosphinidene Chalcogenide Ligands - Publication - MOST Wiedzy


Syntheses and Structures of Transition Metal Complexes with Phosphanylphosphinidene Chalcogenide Ligands


The reactivity of the phosphanylphosphinidene complex [(DippN)2W(Cl)(η2-P-PtBu2)]− (1) toward chalcogens (Ch = Se, S) was studied. Reactions of stoichiometric amounts of 1 with chalcogens in DME yielded monomeric tungsten complexes with phosphanylphosphinidene chalcogenide ligands of the formula tBu2P−P−Ch (Ch = Se (in 2) and S (in 5)), which can be regarded as products of the addition of a chalcogen atom to a P=W bond in starting complex 1. The dissolution of selenophosphinidene complex 2 in nondonor solvents led to the formation of a dinuclear complex of tungsten (3) bearing a tBu2P(Se)−P ligand together with [tBuSe2Li(dme)2]2 and polyphosphorus species. Under the same reaction conditions, thiophosphinidene complex 5 dimerized via the formation of transient complex 7, possessing a thiotetraphosphane-diido moiety tBu2P(S−P−P−PtBu2. The elimination of the tBu2PS group from 7 yielded stable dinuclear tungsten complex 8 with an unusual phosphinidene tBu2P−P−P ligand. The reaction of 1 with excess chalcogen led to the cleavage of the P−P bond in the tBu2P−P ligand and the formation of [(DippN)2W(PCh4)]22− and [tBuCh2Li(dme)2]2. The isolated compounds were characterized by NMR spectroscopy and X-ray crystallography. Furthermore, the calculated geometries of the free selenophosphinidenes, tBu2P−P−Se and tBu2P(Se)−P, were compared with their geometries when serving as ligands in complexes 2 and 3.


  • 3


  • 3

    Web of Science

  • 3


Cite as

Full text

download paper
downloaded 24 times
Publication version
Accepted or Published Version
Copyright (2019 American Chemical Society)



artykuł w czasopiśmie wyróżnionym w JCR
Published in:
INORGANIC CHEMISTRY no. 58, pages 7905 - 7914,
ISSN: 0020-1669
Publication year:
Bibliographic description:
Ordyszewska A., Szynkiewicz N., Ponikiewski Ł., Scheer M., Pikies J., Grubba R.: Syntheses and Structures of Transition Metal Complexes with Phosphanylphosphinidene Chalcogenide Ligands// INORGANIC CHEMISTRY. -Vol. 58, iss. 12 (2019), s.7905-7914
Digital Object Identifier (open in new tab) 10.1021/acs.inorgchem.9b00594
Bibliography: test
  1. Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A Singlet Phosphinidene Stable at Room Temperature. Chem 2016, 1 (1), 147-153 DOI: 10.1016/j.chempr.2016.04.001. open in new tab
  2. Aktaş, H.; Chris Slootweg, J.; Lammertsma, K. Nucleophilic Phosphinidene Complexes: Access and Applicability. Angew. Chemie -Int. Ed. 2010, 49 (12), 2102-2113 DOI: 10.1002/anie.200905689. open in new tab
  3. Lammertsma, K.; Vlaar, M. J. M. Carbene-like Chemistry of Phosphinidene Complexes - Reactions, Applications, and Mechanistic Insights. European J. Org. Chem. 2002, 1127- 1138 DOI: 10.1002/1099-0690(200204)2002:7<1127::AID-EJOC1127>3.0.CO;2-X. open in new tab
  4. Cowley, A. H. Terminal Phosphinidene and Heavier Congeneric Complexes. The Quest Is Over. Acc. Chem. Res. 1997, 30 (11), 445-451 DOI: 10.1021/ar970055e. open in new tab
  5. Mathey, F. The Development of a Carbene-like Chemistry with Terminal Phosphinidene Complexes. Angew. Chemie Int. Ed. English 1987, 26 (4), 275-286 DOI: 10.1002/anie.198702753. open in new tab
  6. Mathey, F.; Huy, N. H. T.; Marinetti, A. Electrophilic Terminal-Phosphinidene Complexes: Versatile Phosphorus Analogues of Singlet Carbenes. Helv. Chim. Acta 2001, 84 (10), 2938-2957 DOI: 10.1002/1522-2675(20011017)84:10<2938::AID-HLCA2938>3.0.CO;2- P. open in new tab
  7. Olkowska-Oetzel, J.; Pikies, J. Review: Chemistry of the Phosphinophosphinidene Chemistry of the Phosphinophosphinidene t Bu2P-P, a Novel π-Electron Ligand. Appl. Organomet. Chem. 2003, 17 (1), 28-35 DOI: 10.1002/aoc.387. open in new tab
  8. Hansmann, M. M.; Jazzar, R.; Bertrand, G. Singlet (Phosphino)Phosphinidenes Are Electrophilic. J. Am. Chem. Soc. 2016, 138 (27), 8356-8359 DOI: 10.1021/jacs.6b04232. open in new tab
  9. Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. 31 P NMR Chemical Shifts of Carbene-Phosphinidene Adducts as an Indicator of the π-Accepting Properties of Carbenes. Angew. Chemie Int. Ed. 2013, 52 (10), 2939-2943 DOI: 10.1002/anie.201209109. open in new tab
  10. Shah, S.; Protasiewicz, J. D. 'Phospha-Variations' on the Themes of Staudinger and Wittig: Phosphorus Analogs of Wittig Reagents. Coord. Chem. Rev. 2000, 210 (1), 181-201 DOI: 10.1016/S0010-8545(00)00311-8. open in new tab
  11. Fritz, G.; Vaahs, T.; Fleischer, H.; Matern, E. t Bu2P-P=PBr t Bu2·LiBr and the Formation of t Bu2P-P. Angew. Chemie Int. Ed. English 1989, 28 (3), 315-316 DOI: 10.1002/anie.198903151. open in new tab
  12. Krautscheid, H.; Matern, E.; Kovacs, I.; Fritz, G.; Pikies, J. Komplexchemie P-Reicher Phosphane Und Silylphosphane. XIV. Phosphinophosphiniden t Bu2P-P Als Ligand in Den Pt-Komplexen [η 2 -{ t Bu2P-P}Pt(PPh3)2] Und [η 2 -{ t Bu2P-P}Pt(PEtPh2)2]. open in new tab
  13. Zeitschrift für Anorg. und Allg. Chemie 1997, 623 (12), 1917-1924 DOI: 10.1002/zaac.19976231216. open in new tab
  14. Kilgore, U. J.; Fan, H.; Pink, M.; Urnezius, E.; Protasiewicz, J. D.; Mindiola, D. J. Phosphinidene Group-Transfer with a Phospha-Wittig Reagent: A New Entry to Transition Metal Phosphorus Multiple Bonds. Chem. Commun. 2009, No. 30, 4521 DOI: 10.1039/b910410k. open in new tab
  15. Graham, C. M. E.; Pritchard, T. E.; Boyle, P. D.; Valjus, J.; Tuononen, H. M.; Ragogna, P. J. Trapping Rare and Elusive Phosphinidene Chalcogenides. Angew. Chemie -Int. Ed. 2017, 56 (22), 6236-6240 DOI: 10.1002/anie.201611196. open in new tab
  16. Graham, C. M. E.; Valjus, J.; Pritchard, T. E.; Boyle, P. D.; Tuononen, H. M.; Ragogna, P. J. Phosphorus-Chalcogen Ring Expansion and Metal Coordination. Inorg. Chem. 2017, 56 (21), 13500-13509 DOI: 10.1021/acs.inorgchem.7b02217. open in new tab
  17. Gaspar, P. P.; Qian, H.; Beatty, A. M.; André D'Avignon, D.; Kao, J. L. F.; Watt, J. C.; Rath, N. P. 2,6-Dimethoxyphenylphosphirane Oxide and Sulfide and Their Thermolysis to Phosphinidene Chalcogenides -Kinetic and Mechanistic Studies. Tetrahedron 2000, 56 (1), 105-119 DOI: 10.1016/S0040-4020(99)00779-6. open in new tab
  18. Cummins, C. C. Reductive Cleavage and Related Reactions Leading to Molybdenum- element Multiple Bonds: New Pathways Offered by Three-Coordinate Molybdenum(III). open in new tab
  19. Chem. Commun. 1998, 7 (17), 1777-1786 DOI: 10.1039/a802402b. open in new tab
  20. Balázs, G.; Green, J. C.; Scheer, M. Terminally Coordinated AsS and PS Ligands. Chem. - A Eur. J. 2006, 12 (33), 8603-8608 DOI: 10.1002/chem.200600975. open in new tab
  21. Weber, L.; Meine, G.; Niederpruem, N.; Boese, R. Transition-Metal-Substituted Diphposphenes. 10. Reaction of the Diphosphenyl Complex (η 5 -C5Me5)(CO)2FeP=PAr (Ar = 2,4,6-t-Bu3C6H2) with Sulfur and Selenium. Preparation and x-Ray Structure Analysis of the First Phosphinidene(Thioxo)Phosphoranyl Complex. Organometallics 1987, 6 (9), 1989-1991 DOI: 10.1021/om00152a028. open in new tab
  22. Reisacher, H. U.; McNamara, W. F.; Duesler, E. N.; Paine, R. T. Reactions of Molybdenum and Tungsten Phosphenium Complexes with Sulfur and Selenium. Organometallics 1997, 16 (3), 449-455 DOI: 10.1021/om9605490. open in new tab
  23. Malisch, W.; Grün, K.; Hirth, U.-A.; Noltemeyer, M. Phosphenium- Übergangsmetallkomplexe XXVIII. PH-Funktiionalisierte Phosphametallacyclen open in new tab
  24. C5R5(OC)2W-PH(t-Bu)-X (R = H, Me; open in new tab
  25. X = S, Se, Te) Mit Dreiringstruktur. J. Organomet.
  26. Chem. 1996, 513 (1-2), 31-36 DOI: 10.1016/0022-328X(95)05875-P. open in new tab
  27. Lorenz, I. -P; open in new tab
  28. Mürschel, P.; Pohl, W.; Polborn, K. Mono-Und Diferriophosphane Und - thioxophosphorane. Chem. Ber. 1995, 128 (4), 413-416 DOI: 10.1002/cber.19951280413. open in new tab
  29. Hitchcock, P. B.; Johnson, J. A.; Lemos, M. A. N. D. A.; Meidine, M. F.; Nixon, J. F.; Pombeiro, A. J. L. Novel Synthesis of a Phosphinidene Oxide-κP (RP=O, R = Bu t CH2-) Complex of Rhenium(I) from a Phosphaalkyne Precursor. Crystal and Molecular Structure of [ReCl(Ph2PCH2CH2PPh2)2{P(O)CH2Bu t }]. open in new tab
  30. J. Chem. Soc., Chem. Commun. 1992, No. 8, 645-646 DOI: 10.1039/C39920000645. open in new tab
  31. Alonso, M.; García, M. E.; Ruiz, M. A.; Hamidov, H.; Jeffery, J. C. Chemistry of the Phosphinidene Oxide Ligand. J. Am. Chem. Soc. 2004, 126 (42), 13610-13611 DOI: 10.1021/ja045487g. open in new tab
  32. Alonso, M.; Alvarez, M. A.; García, M. E.; García-Vivó, D.; Ruiz, M. A. Chemistry of the Oxophosphinidene Ligand. 1. Electronic Structure of the Anionic Complexes [MCp{P(O)R*}(CO)2]-(M = Mo, W; R* = 2,4,6-C6H2 t Bu3) and Their Reactions with H + and C-Based Electrophiles. Inorg. Chem. 2010, 49 (19), 8962-8976 DOI: 10.1021/ic101261f. open in new tab
  33. Alonso, M.; Alvarez, M. A.; García, M. E.; Ruiz, M. A.; Hamidov, H.; Jeffery, J. C. Oxidation Reactions of the Phosphinidene Oxide Ligand. J. Am. Chem. Soc. 2005, 127 (43), 15012-15013 DOI: 10.1021/ja054941t. open in new tab
  34. Alonso, M.; Alvarez, M. A.; García, M. E.; García-Vivó, D.; Ruiz, M. A. Nucleophilic Behaviour of Dioxo-and Thiooxophosphorane Complexes [MoCp(CO)2{E,P-EP(O)(2,4,6- C6H2 t Bu3)}]-(E = O, S). Dalt. Trans. 2014, 43 (42), 16074-16083 DOI: 10.1039/c4dt01942c. open in new tab
  35. García, M. E.; García-Vivó, D.; Ramos, A.; Ruiz, M. A. Phosphinidene-Bridged Binuclear Complexes. Coord. Chem. Rev. 2017, 330, 1-36 DOI: 10.1016/j.ccr.2016.09.008. open in new tab
  36. Schmitt, G.; Ullrich, D.; Wolmershäuser, G.; Regitz, M.; Scherer, O. J. t BuC≡P Als Edukt Für Die Bildung Eines Rhenium-Zweikernkomplexes Mit Einem Verbrückenden, Chiralen Phosphinidenoxid-Liganden. Zeitschrift für Anorg. und Allg. Chemie 1999, 625 (5), 702- 704 DOI: 10.1002/(SICI)1521-3749(199905)625:5<702::AID-ZAAC702>3.0.CO;2-C. open in new tab
  37. Hirth, U. A.; Malisch, W.; Käb, H. Phosphenium-Übergangsmetallkomplexe. XXI. Schwefel-Und Selenaddition an Die Metall-Phosphor-Doppelbindung Der Zweikernigen Phosphinidenkomplexe Cp(CO)2M=PMes[M(CO)3Cp] (M = Mo, W). J. Organomet. Chem. 1992, 439 (1), 20-24 DOI: 10.1016/0022-328X(92)80062-3. open in new tab
  38. Lv, Y.; Kefalidis, C. E.; Zhou, J.; Maron, L.; Leng, X.; Chen, Y. Versatile Reactivity of a Four-Coordinate Scandium Phosphinidene Complex: Reduction, Addition, and CO Activation Reactions. J. Am. Chem. Soc. 2013, 135 (39), 14784-14796 DOI: 10.1021/ja406413d. open in new tab
  39. Kourkine, I.; Glueck, D. Synthesis and Reactivity of a Dimeric Platinum Phosphinidene Complex. Inorg. Chem. 1997, 36 (9), 5160-5164 DOI: 10.1021/ic970730g. open in new tab
  40. Alvarez, C. M.; Alvarez, M. A.; García, M. E.; Ramos, A.; Ruiz, M. A.; Lanfranchi, M.; Tiripicchio, A. A Triply Bonded Dimolybdenum Hydride Complex with Acid, Base and Radical Activity. Organometallics 2005, 24 (1), 7-9 DOI: 10.1021/om0491948. open in new tab
  41. Alvarez, M. A.; García, M. E.; González, R.; Ruiz, M. a. Reactions of the Phosphinidene- Bridged Complexes [Fe2(η 5 -C5H5)2(μ-PR)(μ-CO)(CO)2] (R = Cy, Ph) with Electrophiles Based on p-Block Elements. Dalt. Trans. 2012, 41 (48), 9005-9018 DOI: 10.1039/c2dt31506h. open in new tab
  42. Alvarez, M. A.; García, M. E.; González, R.; Ramos, A.; Ruiz, M. A. Chemical and Structural Effects of Bulkness on Bent-Phosphinidene Bridges: Synthesis and Reactivity of the Diiron Complex [Fe2Cp2{μ-P(2,4,6-C6H2 t Bu3)}(μ-CO)(CO)2]. Organometallics 2010, 29 (8), 1875-1878 DOI: 10.1021/om100137d. open in new tab
  43. Alvarez, B.; Alvarez, M. A.; Amor, I.; García, M. E.; García-Vivó, D.; Suárez, J.; Ruiz, M. A. Dimolybdenum Cyclopentadienyl Complexes with Bridging Chalcogenophosphinidene Ligands. Inorg. Chem. 2012, 51 (14), 7810-7824 DOI: 10.1021/ic300869z. open in new tab
  44. Alvarez, B.; Angeles Alvarez, M.; Amor, I.; García, M. E.; Ruiz, M. A. A Thiophosphinidene Complex as a Vehicle in Phosphinidene Transmetalation: Easy Formation and Cleavage of a P-S Bond. Inorg. Chem. 2011, 50 (21), 10561-10563 DOI: 10.1021/ic202058h. open in new tab
  45. Alvarez, B.; Alvarez, M. A.; García, M. E.; Ruiz, M. A. P-S Bond Cleavage in Reactions of Thiophosphinidene-Bridged Dimolybdenum Complexes with [Co2(CO)8] to Give Phosphinidene-Bridged Heterometallic Derivatives. Dalt. Trans. 2016, 45 (5), 1937-1952 DOI: 10.1039/c5dt01450f. open in new tab
  46. Ehlers, A. W.; Baerends, E. J.; Lammertsma, K. Nucleophilic or Electrophilic Phosphinidene Complexes MLn=PH; What Makes the Difference? J. Am. Chem. Soc. 2002, 124 (11), 2831-2838 DOI: 10.1021/ja017445n. open in new tab
  47. Graham, T. W.; Udachin, K. A.; Carty, A. J. Synthesis of σ-π-Phosphinidene Sulfide Complexes [Mn2(CO)n(μ-η 1 , η 2 -P(NR2)S)] (N=8,9) via Direct Sulfuration of Electrophilic μ-Phosphinidenes and Photochemical Transformation to a Trigonal Prismatic Mn2P2S2 open in new tab
  48. Cluster. Inorganica Chim. Acta 2007, 360 (4), 1376-1379 DOI: 10.1016/j.ica.2006.02.022. open in new tab
  49. Grubba, R.; Baranowska, K.; Chojnacki, J.; Pikies, J. Access to Side-On Bonded Tungsten Phosphanylphosphinidene Complexes. Eur. J. Inorg. Chem. 2012, 2012 (20), 3263-3265 DOI: 10.1002/ejic.201200456. open in new tab
  50. Grubba, R.; Ordyszewska, A.; Kaniewska, K.; Ponikiewski, Ł.; Chojnacki, J.; Gudat, D.; Pikies, J. Reactivity of Phosphanylphosphinidene Complex of Tungsten(VI) toward Phosphines: A New Method of Synthesis of Catena -Polyphosphorus Ligands. Inorg. Chem. 2015, 54 (17), 8380-8387 DOI: 10.1021/acs.inorgchem.5b01063. open in new tab
  51. Grubba, R.; Ordyszewska, A.; Ponikiewski, Ł.; Gudat, D.; Pikies, J. An Investigation on the Chemistry of the R2P=P Ligand: Reactions of a Phosphanylphosphinidene Complex of Tungsten(VI) with Electrophilic Reagents. Dalt. Trans. 2016, 45 (5), 2172-2179 DOI: 10.1039/C5DT03085D. open in new tab
  52. Zauliczny, M.; Ordyszewska, A.; Pikies, J.; Grubba, R. Bonding in Phosphanylphosphinidene Complexes of Transition Metals and Their Correlation with Structures, 31 P NMR Spectra, and Reactivities. Eur. J. Inorg. Chem. 2018, 2018 (26), 3131- 3141 DOI: 10.1002/ejic.201800270. open in new tab
  53. Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1-118. Chem. -A Eur. J. 2009, 15 (1), 186-197 DOI: 10.1002/chem.200800987. open in new tab
  54. Alper, H.; Petrignani, J. F.; Einstein, F. W. B.; Willis, A. C. Binuclear Phosphinothioylidene Complexes. Organometallics 1983, 2 (10), 1422-1426 DOI: 10.1021/om50004a030. open in new tab
  55. Lindner, E.; Auch, K.; Hiller, W.; Fawzi, R. Methyl(Thioxo)Phosphane: Generation and Trapping Reaction with Mn2(CO)10. Angew. Chemie Int. Ed. English 1984, 23 (4), 320-320 DOI: 10.1002/anie.198403201. open in new tab
  56. Hussong, R.; Heydt, H.; Maas, G.; Regitz, M. Phosphorverbindungen Ungewöhnlicher Koordination, 17 1) Über Die Abfangreaktion von Phenylthioxophosphan Mit Hexacarbonylbis(Cyclopentadienyl)Dimolybdän. Chem. Ber. 1987, 120 (7), 1263-1267 DOI: 10.1002/cber.19871200727. open in new tab
  57. Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li-E112.
  58. Chem. -A Eur. J. 2009, 15 (46), 12770-12779 DOI: 10.1002/chem.200901472. open in new tab
  59. Surgenor, B. a; open in new tab
  60. Chalmers, B. a; open in new tab
  61. Athukorala Arachchige, K. S.; Slawin, A. M. Z.; Woollins, J. D.; Bühl, M.; Kilian, P. Reactivity Profile of a Peri-Substitution-Stabilized Phosphanylidene-Phosphorane: Synthetic, Structural, and Computational Studies. Inorg. Chem. 2014, 53 (13), 6856-6866 DOI: 10.1021/ic500697m. open in new tab
  62. Grubba, R.; Zauliczny, M.; Ponikiewski, Ł.; Pikies, J. The Reactivity of 1,1-Dichloro-2,2- Di-Tert-Butyldiphosphane towards Lithiated Metal Carbonyls: A New Entry to Phosphanylphosphinidene Dimers. Dalt. Trans. 2016, 45 (12) DOI: 10.1039/c5dt04983k. open in new tab
  63. Grubba, R.; Wiśniewska, A.; Ponikiewski, Ł.; Caporali, M.; Peruzzini, M.; Pikies, J. Reactivity of Diimido Complexes of Moybdenum and Tungsten towards Lithium Derivatives of Diphosphanes and Triphosphanes. Eur. J. Inorg. Chem. 2014, No. 10, 1811- 1817 DOI: 10.1002/ejic.201301302. open in new tab
  64. Wiśniewska, A.; Grubba, R.; Ponikiewski, Ł.; Zauliczny, M.; Pikies, J. The New Diphosphanylphosphido Complexes of Tungsten(VI) and Molybdenum(VI). Their Synthesis, Structures and Properties. Dalt. Trans. 2018, 47 (30), 10213-10222 DOI: 10.1039/C8DT01977K. open in new tab
  65. Chondroudis, K.; Kanatzidis, M. G.; Sayettat, J.; Jobic, S.; Brec, R. Palladium Chemistry in Molten Alkali Metal Polychalcophosphate Fluxes. Synthesis and Characterization of K4Pd(PS4)2 , Cs4Pd(PSe4)2 , Cs10Pd(PSe4)4 , KPdPS4 , K2PdP2S6 , and Cs2PdP2Se6. Inorg. Chem. 1997, 36 (25), 5859-5868 DOI: 10.1021/ic970593n. open in new tab
  66. Chondroudis, K.; Kanatzidis, M. G. [M4(Se2)2(PSe4)4] 8− : A Novel, Tetranuclear, Cluster Anion with a Stellane-like Core. Chem. Commun. 1997, 4 (4), 401-402 DOI: 10.1039/a607549e. open in new tab
  67. Chondroudis, K.; Kanatzidis, M. G. [Ce(PSe4)4] 9− : A Highly Anionic Ce 3+ Selenophosphate Coordination Complex. Inorg. Chem. Commun. 1998, 1 (2), 55-57 DOI: 10.1016/S1387- 7003(98)00011-2. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 33 times

Recommended for you

Meta Tags