The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts - Publication - Bridge of Knowledge

Search

The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts

Abstract

Abstract: The principal objective of this study was to determine the anti-staphylococcal potential of ethanol extracts of propolis (EEPs). A total of 20 samples of propolis collected from apiaries located in different regions of Poland were used in the study. The two-fold broth microdilution method revealed some important differences in the antimicrobial activity of investigated EEPs. Up to the concentration of 4096 µg/mL no activity was observed against Gram-negative bacteria (E. coli and P. aeruginosa). Staphylococci exhibited much higher susceptibility. The highest efficiency observed for EEP12 and EEP20 (MIC values ranged between 32 and 256 µg/mL). However, the achievement of bactericidal effect usually required higher concentrations. In the case of clinical isolates of S. aureus MBC values for EEP12 and EEP20 ranged from 512 to 1024 µg/mL. The HPLC analysis revealed that these two products contained a higher concentration of flavonoids (flavonols, flavones, and flavanones) compared to other investigated EEPs. In checkerboard test, a synergistic anti-staphylococcal effect was observed for the action of EEP20 in combination with amikacin, kanamycin, gentamycin, tetracycline, and fusidic acid (all these antibiotics inhibit protein synthesis). Moreover, the investigated EEPs effectively eradicated staphylococcal biofilm. The obtained results clearly confirm the high anti-staphylococcal potential of propolis harvested in Polish apiaries.

Citations

  • 4 5

    CrossRef

  • 0

    Web of Science

  • 5 2

    Scopus

Cite as

Full text

download paper
downloaded 60 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 24,
ISSN: 1420-3049
Language:
English
Publication year:
2019
Bibliographic description:
Grecka K., Kuś P., Okińczyc, P., Worobo R., Walkusz J., Szweda P.: The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts// MOLECULES -Vol. 24,iss. 9 (2019), s.1732-
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules24091732
Bibliography: test
  1. Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol. 2017, 76, 76-83. [CrossRef] open in new tab
  2. Ngoc Thi Vu, B.; J Jafari, A.; Aardema, M.; Kieu Thi Tran, H.; Ngoc Thi Nguyen, D.; Tuyet Dao, T.; Vu Nguyen, T.; Khanh Tran, T.; Kim Thi Nguyen, C.; Fox, A.; et al. Population structure of colonizing and invasive Staphylococcus aureus strains in northern Vietnam. J. Med. Microbiol. 2016, 65, 298-305. [CrossRef] open in new tab
  3. Van Belkum, A.; Melles, D.C.; Nouwen, J.; van Leeuwen, W.B.; van Wamel, W.; Vos, M.C.; Wertheim, H.F.; Verbrugh, H.A. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect. Genet. Evol. 2009, 9, 32-47. [CrossRef] [PubMed] open in new tab
  4. Nascimento, J.S.; Ceotto, H.; Nascimento, S.B.; Giambiagi-Demarval, M.; Santos, K.R.; Bastos, M.C. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Lett. Appl. Microbiol. 2006, 42, 215-221. [CrossRef] [PubMed] open in new tab
  5. Okuda, K.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572-5579. [CrossRef] open in new tab
  6. Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649-659. [CrossRef] Molecules 2019, 24, 1732 open in new tab
  7. Matsuzaki, S.; Yasuda, M.; Nishikawa, H.; Kuroda, M.; Ujihara, T.; Shuin, T.; Shen, Y.; Jin, Z.; Fujimoto, S.; Nasimuzzaman, M.D.; et al. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J. Infect. Dis. 2003, 187, 613-624. [CrossRef] open in new tab
  8. Szweda, P.; Schielmann, M.; Kotlowski, R.; Gorczyca, G.; Zalewska, M.; Milewski, S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2012, 96, 1157-1174. [CrossRef] open in new tab
  9. Kurek, A.; Grudniak, A.M.; Kraczkiewicz-Dowjat, A.; Wolska, K.I. New antibacterial therapeutics and strategies. Pol. J Microbiol. 2011, 60, 3-12. [PubMed] open in new tab
  10. Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136-141. [CrossRef] [PubMed] open in new tab
  11. Szweda, P.; Kot, B. Bee products and essential oils as alternative agents for treatment of infections caused by S. aureus. In Frontiers in Staphylococcus aureus; Enany, S., Alexander, L.E.C., Eds.; IntechOpen: London, UK. [CrossRef] open in new tab
  12. Szweda, P.; Zalewska, M.; Pilch, J.; Kot, B.; Milewski, S. Essential oils as potential anti-staphylococcal agents. Acta Vet. Beograd. 2018, 68, 95-107. [CrossRef] open in new tab
  13. Kang, J.; Dietz, M.J.; Hughes, K.; Xing, M.; Li, B. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus. J. Antimicrob. Chemother. 2019, dkz053. [CrossRef] [PubMed] open in new tab
  14. Betts, J.W.; Abdul Momin, H.F.; Phee, L.M.; Wareham, D.W. Comparative activity of tedizolid and glycopeptide combination therapies for the treatment of Staphylococcus aureus infections: An in vitro and in vivo evaluation against strains with reduced susceptibility to glycopeptides. J. Med. Microbiol. 2018, 67, 265-271. [CrossRef] [PubMed] open in new tab
  15. Leijtens, B.; Elbers, J.B.W.; Sturm, P.D.; Kullberg, B.J.; Schreurs, B.W. Clindamycin-rifampin combination therapy for staphylococcal periprosthetic joint infections: A retrospective observational study. BMC Infect. Dis. 2017, 17, 321. [CrossRef] open in new tab
  16. Fu, X.J.; Fang, Y.; Yao, M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed. Res. Int. 2013, 159157. open in new tab
  17. Almeida, P.P.; Pereira, Í.S.; Rodrigues, K.B.; Leal, L.S.; Marques, A.S.; Rosa, L.P.; da Silva, F.C.; da Silva, R.A.A. Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers Med. Sci. 2017, 32, 1337-1342. [CrossRef] open in new tab
  18. Giersing, B.K.; Dastgheyb, S.S.; Modjarrad, K.; Moorthy, V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine 2016, 34, 2962-2966. [CrossRef] open in new tab
  19. Haghighat, S.; Siadat, S.D.; Sorkhabadi, S.M.R.; Sepahi, A.A.; Mahdavi, M. A novel recombinant vaccine candidate comprising PBP2a and autolysin against Methicillin Resistant Staphylococcus aureus confers protection in the experimental mice. Mol. Immunol. 2017, 91, 1-7. [CrossRef] [PubMed] open in new tab
  20. Chang, B.C.; Wang, S.J. The newly filed patent applications for vaccines against Staphylococcus aureus. Hum. Vaccin. Immunother. 2017, 13, 2637-2638. [CrossRef] [PubMed] open in new tab
  21. Szweda, P. Antimicrobial activity of honey. In Honey Analysis; IntechOpen: London, UK, 2017. [CrossRef] open in new tab
  22. Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295-311. [CrossRef] open in new tab
  23. Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid. Based Complement. Alternat. Med. 2015, 206439. [CrossRef] open in new tab
  24. Burdock, G.A. Review of the biological properties and toxicity of bee propolis. Food Chem. Toxicol. 1998, 36, 347-363. [CrossRef] open in new tab
  25. Dobrowolski, J.W.; Vohora, S.B.; Sharma, K.; Shah, S.A.; Naqvi, S.A.H.; Dandiya, P.C. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J. Ethnopharmacol. 1991, 35, 77-82. [CrossRef] open in new tab
  26. Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83-99. [CrossRef] open in new tab
  27. Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [CrossRef] open in new tab
  28. Archer, N.K.; Mazaitis, M.J.; Costerton, J.W.; Leid, J.G.; Powers, M.E.; Shirtliff, M.E. Staphylococcus aureus biofilms: Properties, regulation and roles in human disease. Virulence 2011, 2, 445-459. [CrossRef] open in new tab
  29. Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167-193. [CrossRef] open in new tab
  30. Metlin Scripps Center for Metabolomics and Mass Spectrometry (Metlin). La Jolla, USA The Scripps Research Institute. Available online: https://metlin.scripps.edu/index.php (accessed on 28 August 2018). open in new tab
  31. Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid gc/ms determination of botanical precursors of Eurasian propolis. Food Chem. 2014, 142, 101-106. [CrossRef] open in new tab
  32. Shi, H.; Yang, H.; Zhang, X.; Yu, L.L. Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of chinese propolis. J. Agric. Food Chem. 2012, 60, 12403-12410. [CrossRef] open in new tab
  33. Pellati, F.; Orlandinia, G.; Pinetti, D.; Benvenutia, S. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J. Pharm. Biomed. Anal. 2011, 55, 934-948. [CrossRef] open in new tab
  34. Shi, H.; Yang, H.; Zhang, X.; Sheng, Y.; Huang, H.; Yu, L. Isolation and characterization of five glycerol esters from Wuhan propolis and their potential anti-inflammatory properties. J. Agric. Food Chem. 2012, 60, 10041-10047. [CrossRef] open in new tab
  35. Trudić, B.; Anđelković, B.; Orlović, S.; Tešević, V.; Pilipović, A.; Cvetković, M.; Stanković, J. HPLC/MS-TOF analysis of surface resins from three poplar clones grown in Serbia. South-East Eur. For. 2016, 7, 129-133. [CrossRef] open in new tab
  36. Wishart Research Group. HMDB: The Human Metabolome Database. University of Alberta, Edmonton, Canada, Wishart Lab. Available online: www.hmdb.ca (accessed on 30 August 2018). open in new tab
  37. Ristivojević, P.; Trifković, J.; Gašić, U.; Andrić, F.; Nedić, N.; Tešić, Ž.; Milojković-Opsenica, D. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC-LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem. Anal. 2015, 26, 127-136. [CrossRef] open in new tab
  38. Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and biological evaluation of propolis from Poland. Molecules 2017, 22. [CrossRef] open in new tab
  39. Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 11, 1869-1876. [CrossRef] open in new tab
  40. Lee, I.; Han, M.; Kim, D.; Yun, B. Phenylpropanoid acid esters from Korean propolis and their antioxidant activities. Bioorg. Med. Chem. Lett. 2014, 24, 3503-3505. [CrossRef] open in new tab
  41. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369-379. [CrossRef] open in new tab
  42. Bertrams, J.; Müller, B.M.; Kunz, N.; Kammerer, D.R.; Stintzing, F.C. Phenolic compounds as marker compounds for botanical origin determination of German propolis samples based on TLC and TLC-MS.
  43. J. Appl. Bot. Food Qual. 2013, 86, 143-153. open in new tab
  44. Greenaway, W.; Wollenweber, E.; Scaysbrook, T.; Whatley, F.R. Esters of caffeic acid with aliphatic alcohols in bud exudate of Populus nigra. Z. Naturforsch. C. 1988, 43, 795-798. [CrossRef] open in new tab
  45. Justen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001, 36, 169-178. [CrossRef] open in new tab
  46. Medana, C.; Carbone, F.; Aigotti, R.; Appendino, G.; Baiocchi, C. Selective analysis of phenolic compounds in propolis by HPLC-MS/MS. Phytochem. Anal. 2008, 19, 32-39. [CrossRef] open in new tab
  47. Gardana, C.; Scaglianti, M.; Pietta, P.; Simonetti, P. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390-399. [CrossRef] [PubMed] open in new tab
  48. Isidorov, V.A.; Brzozowska, M.; Czyżewska, U.; Glinka, L. Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. J. Chromatogr. A 2008, 1198-1199, 196-201. [CrossRef] open in new tab
  49. Greenaway, W.; Whatley, F.R. Bud exudate composition of Populus tremuloides. Can. J. Bot. 1991, 69, 2291-2295.
  50. Kečkeš, S.; Gašić, U.; Veličković, T.Ć.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32-40. [CrossRef] [PubMed] open in new tab
  51. Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Zielińska Jurek, A.; Kuś, P.M.; Milewski, S. Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J. Microbiol. 2015, 55, 175-183. [CrossRef] [PubMed] open in new tab
  52. Gucwa, K.; Kusznierewicz, B.; Milewski, S.; Van Dijck, P.; Szweda, P. Antifungal activity and synergism with azoles of Polish propolis. Pathogens 2018, 7, 56. [CrossRef] open in new tab
  53. Regueira, M.S.; Neto Tintino, S.R.; da Silva, A.R.P.; Costa, M.D.S.; Boligon, A.A.; Matias, E.F.F.; de Queiroz Balbino, V.; Menezes, I.R.A.; Melo Coutinho, H.D. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food. Chem. Toxicol. 2017, 107, 572-580. [CrossRef] [PubMed] open in new tab
  54. Machado, B.A.; Silva, R.P.; Barreto Gde, A.; Costa, S.S.; Silva, D.F.; Brandão, H.N.; Rocha, J.L.; Dellagostin, O.A.; Henriques, J.A.; Umsza-Guez, M.A.; et al. Chemical composition and biological activity of extracts obtained by supercritical extraction and ethanolic extraction of brown, green and red propolis derived from different geographic regions in Brazil. PLoS ONE 2016, 11, e0145954. [CrossRef] [PubMed] open in new tab
  55. Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.A.; Rebouças Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [CrossRef] [PubMed] open in new tab
  56. Suleman, T.; van Vuuren, S.; Sandasi, M.; Viljoen, A.M. Antimicrobial activity and chemometric modelling of South African propolis. J. Appl. Microbiol. 2015, 119, 981-990. [CrossRef] [PubMed] open in new tab
  57. Velazquez, C.; Navarro, M.; Acosta, A.; Angulo, A.; Dominguez, Z.; Robles, R.; Robles-Zepeda, R.; Lugo, E.; Goycoolea, F.M.; Velazquez, E.F.; et al. Antibacterial and free-radical scavenging activities of Sonoran propolis. J. Appl. Microbiol. 2007, 103, 1747-1756. [CrossRef] [PubMed] open in new tab
  58. Jafarzadeh Kashi, T.S.; Kasra Kermanshahi, R.; Erfan, M.; Vahid Dastjerdi, E.; Rezaei, Y.; Tabatabaei, F.S. Evaluating the in-vitro antibacterial effect of Iranian propolis on oral microorganisms. Iran. J. Pharm. Res. 2011, 10, 363-368. [PubMed]
  59. Ristivojević, P.; Dimkić, I.; Trifković, J.; Berić, T.; Vovk, I.; Milojković-Opsenica, D.; Stanković, S. Antimicrobial activity of serbian propolis evaluated by means of MIC, HPTLC, bioautography and chemometrics. PLoS ONE 2016, 11, e0157097. [CrossRef] [PubMed] open in new tab
  60. Massaro, C.F.; Simpson, J.B.; Powell, D.; Brooks, P. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Naturwissenschaften 2015, 102, 68. [CrossRef] [PubMed] open in new tab
  61. Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, E2. [CrossRef] open in new tab
  62. Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wąsik, T.J. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 2013, 18, 9623-9640. [CrossRef] open in new tab
  63. Wojtyczka, R.D.; Kępa, M.; Idzik, D.; Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Wąsik, T.J. In vitro antimicrobial activity of ethanolic extract of Polish propolis against biofilm forming Staphylococcus epidermidis Strains. Evid. Based. Complement. Alternat. Med. 2013, 2013, 590703. [CrossRef] open in new tab
  64. Scheller, S.; Dworniczak, S.; Waldemar-Klimmek, K.; Rajca, M.; Tomczyk, A.; Shani, J. Synergism between ethanolic extract of propolis (EEP) and anti-tuberculosis drugs on growth of mycobacteria. Zeitschrift für Naturforschung C 1999, 54, 549-553. [CrossRef] [PubMed] open in new tab
  65. Woo, S.S.; Hong, I.P.; Han, S.M. Extraction properties with of propolis with ethanol concentration. J. Apicul. 2015, 30, 211-216. [CrossRef] open in new tab
  66. Bryan, J.; Redden, P.; Traba, C. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria. Lett. Appl. Microbiol. 2016, 62, 192-198. [CrossRef] open in new tab
  67. Akca, A.E.; Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.Ş. The comparative evaluation of the antimicrobial effect of propolis with chlorhexidine against oral pathogens: An in vitro study. Biomed. Res. Int. 2016, 2016, 3627463. [CrossRef] [PubMed] open in new tab
  68. de Oliveira Dembogurski, D.S.; Silva Trentin, D.; Boaretto, A.G.; Rigo, G.V.; da Silva, R.C.; Tasca, T.; Macedo, A.J.; Carollo, C.A.; Silva, D.B. Brown propolis-metabolomic innovative approach to determine compounds capable of killing Staphylococcus aureus biofilm and Trichomonas vaginalis. Food. Res. Int. 2018, 111, 661-673. [CrossRef] open in new tab
  69. Ambi, A.; Bryan, J.; Borbon, K.; Centeno, D.; Liu, T.; Chen, T.P.; Cattabiani, T.; Traba, C. Are Russian propolis ethanol extracts the future for the prevention of medical and biomedical implant contaminations? Phytomedicine 2017, 30, 50-58. [CrossRef] open in new tab
  70. Pepeljnjak, S.; Kosalec, I. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2004, 240, 111-116. [CrossRef] open in new tab
  71. Fernandes Júnior, A.; Balestrin, E.C.; Betoni, J.E.; Orsi Rde, O.; da Cunha Mde, L.; Montelli, A.C. Propolis: Anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Mem. Inst. Oswaldo. Cruz. 2005, 100, 563-566. [CrossRef] open in new tab
  72. Onlen, Y.; Duran, N.; Atik, E.; Savas, L.; Altug, E.; Yakan, S.; Aslantas, O. Antibacterial activity of propolis against MRSA and synergism with topical mupirocin. J. Altern. Complement. Med. 2007, 13, 713-718. [CrossRef] [PubMed] open in new tab
  73. Krol, W.; Scheller, S.; Shani, J.; Pietsz, G.; Czuba, Z. Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of Staphylococcus aureus. Arzneimittelforschung 1993, 43, 607-609. [PubMed]
  74. Eliopoulos, G.M.; Moellering, R.C., Jr. Antimicrobial combinations. In Antibiotics in Laboratory MedicineLorian, 4th ed.; Lorian, V., Ed.; Wolters Kluwer|Williams & Wilkins Co.: Philadelphia, PA, USA, 1996; pp. 330-396. open in new tab
  75. Dimkić, I.; Ristivojević, P.; Janakiev, T.; Berić, T.; Trifković, J.; Milojković-Opsenica, D.; Stanković, S. Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Ind. Crop. Prod. 2016, 94, 856-871. [CrossRef] open in new tab
  76. Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food. Chem. 2002, 50, 2502-2506. [CrossRef] open in new tab
  77. Isidorov, V.A.; Bakier, S.; Pirożnikow, E.; Zambrzycka, M.; Swiecicka, I. Selective behaviour of honeybees in acquiring European propolis plant precursors. J. Chem. Ecol. 2016, 42, 475-485. [CrossRef] open in new tab
  78. Okińczyc, P.; Szumny, A.; Szperlik, J.; Kulma, A.; Franiczek, R.;Żbikowska, B.; Krzyżanowska, B.; Sroka, Z. Profile of polyphenolic and essential oil composition of Polish propolis, black poplar and aspens buds. Molecules 2018, 23, E1262. [CrossRef] [PubMed] open in new tab
  79. Ristivojević, P.; Dimkić, I.; Guzelmeric, E.; Trifković, J.; Knežević, M.; Berić, T.; Yesilada, E.; Milojković-Opsenica, D.; Stanković, S. Profiling of Turkish propolis subtypes: Comparative evaluation of their phytochemical compositions, antioxidant and antimicrobial activities. LWTFood Sci. Technol. 2018, 95, 367-379. open in new tab
  80. A Kuś, P.M.; Jerković, I.; Jakovljević, M.; Jokić, S. Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO 2 and its optimization by response surface methodology. J. Pharm. Biomed. Anal. 2018, 152, 128-136. [CrossRef] open in new tab
  81. B Kuś, P.M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. Development of supercritical CO 2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC-MS and UHPLC-DAD-QqTOF-MS. J. Pharm. Biomed. Anal. 2018, 158, 15-27. [CrossRef] open in new tab
  82. Kuś, P.; Congiu, F.; Teper, D.; Sroka, Z.; Jerkovi, C.I.; Tuberoso, C.I.G. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT Food Sci. Technol. 2013, 55, 124-130. [CrossRef] open in new tab
  83. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Seventeenth Informational Supplement; CLSI document M100-S17; open in new tab
  84. Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules 2018, 23, E260. [CrossRef] [PubMed] open in new tab
  85. Kairo, S.K.; Bedwell, J.; Tyler, P.C.; Carter, A.; Corbel, M.J. Development of a tetrazolium salt assay for rapid determination of viability of BCG vaccines. Vaccine 1999, 17, 2423-2428. [CrossRef] open in new tab
  86. Walencka, E.; Sadowska, B.; Rozalska, S.; Hryniewicz, W.; Rozalska, B. Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol. J. Microbiol. 2005, 54, 191-200. open in new tab
  87. Sample Availability: Samples of the compounds are not available from the authors. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 189 times

Recommended for you

Meta Tags