The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections - Publication - Bridge of Knowledge

Search

The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections

Abstract

Scutellarie baicalensis radix, as a flavone-rich source, exhibits antibacterial, antifungal, an-
tioxidant, and anti-inflammatory activity. It may be used as a therapeutic agent to treat various
diseases, including vaginal infections. In this study, six binary mixtures of chitosan with stable
S. baicalensis radix lyophilized extract were obtained and identified by spectral (ATR-FTIR, XRPD)
and thermal (TG and DSC) methods. The changes in dissolution rates of active compounds and
the significant increase in the biological properties towards metal chelating activity were observed,
as well as the inhibition of hyaluronic acid degradation after mixing plant extract with chitosan.
Moreover, the combination of S. baicalensis radix lyophilized extract with a carrier allowed us to obtain
the binary systems with a higher antifungal activity than the pure extract, which may be effective in
developing new strategies in the vaginal infections treatment, particularly vulvovaginal candidiasis.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Authors (6)

  • Photo of  Natalia Rosiak

    Natalia Rosiak

  • Photo of  Ewa Wender-Ozegowska

    Ewa Wender-Ozegowska

  • Photo of  Judyta Cielecka-Piontek

    Judyta Cielecka-Piontek

  • Photo of  Daria Szymanowska

    Daria Szymanowska

  • Photo of  Marcin Rajewski

    Marcin Rajewski

Cite as

Full text

download paper
downloaded 25 times
Publication version
Submitted Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Magazine publication
Type:
Magazine publication
Published in:
Pharmaceutics no. 14, edition 4,
ISSN: 1999-4923
ISSN:
1999-4923
Publication year:
2022
DOI:
Digital Object Identifier (open in new tab) 10.3390/pharmaceutics14040740
Bibliography: test
  1. Abdul-Aziz, M.; Mahdy, M.A.K.; Abdul-Ghani, R.; Alhilali, N.A.; Al-Mujahed, L.K.A.; Alabsi, S.A.; Al-Shawish, F.A.M.; Alsarari, N.J.M.; Bamashmos, W.; Abdulwali, S.J.H.; et al. Bacterial Vaginosis, Vulvovaginal Candidiasis and Trichomonal Vaginitis among Reproductive-Aged Women Seeking Primary Healthcare in Sana'a City, Yemen. BMC Infect. Dis. 2019, 19, 879. [CrossRef] [PubMed] open in new tab
  2. Ya, W.; Reifer, C.; Miller, L.E. Efficacy of Vaginal Probiotic Capsules for Recurrent Bacterial Vaginosis: A Double-Blind, Random- ized, Placebo-Controlled Study. Am. J. Obstet. Gynecol. 2010, 203, 120.e1-120.e6. [CrossRef] [PubMed] open in new tab
  3. Bitew, A.; Abebaw, Y.; Bekele, D.; Mihret, A. Prevalence of Bacterial Vaginosis and Associated Risk Factors among Women Complaining of Genital Tract Infection. Int. J. Microbiol. 2017, 2017, 4919404. [CrossRef] [PubMed] open in new tab
  4. Kovachev, S. Defence Factors of Vaginal Lactobacilli. Crit. Rev. Microbiol. 2018, 44, 31-39. [CrossRef] open in new tab
  5. Zeng, X.; Zhang, Y.; Zhang, T.; Xue, Y.; Xu, H.; An, R. Risk Factors of Vulvovaginal Candidiasis among Women of Reproductive Age in Xi'an: A Cross-Sectional Study. BioMed Res. Int. 2018, 2018, e9703754. [CrossRef] open in new tab
  6. Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal Candidiasis: Epidemiology, Microbiology and Risk Factors. Crit. Rev. Microbiol. 2016, 42, 905-927. [CrossRef] open in new tab
  7. Jones, A. Bacterial Vaginosis: A Review of Treatment, Recurrence, and Disparities. J. Nurse Pract. 2019, 15, 420-423. [CrossRef] open in new tab
  8. Ravel, J.; Moreno, I.; Simón, C. Bacterial Vaginosis and Its Association with Infertility, Endometritis, and Pelvic Inflammatory Disease. Am. J. Obstet. Gynecol. 2021, 224, 251-257. [CrossRef] open in new tab
  9. Soper, D.E. Bacterial Vaginosis and Surgical Site Infections. Am. J. Obstet. Gynecol. 2020, 222, 219-223. [CrossRef] open in new tab
  10. Faught, B.M.; Reyes, S. Characterization and Treatment of Recurrent Bacterial Vaginosis. J. Women's Health 2019, 28, 1218-1226. [CrossRef] open in new tab
  11. Bradshaw, C.S.; Sobel, J.D. Current Treatment of Bacterial Vaginosis-Limitations and Need for Innovation. J. Infect. Dis. 2016, 214, S14-S20. [CrossRef] open in new tab
  12. Rosati, D.; Bruno, M.; Jaeger, M.; Ten Oever, J.; Netea, M.G. Recurrent Vulvovaginal Candidiasis: An Immunological Perspective. Microorganisms 2020, 8, 144. [CrossRef] [PubMed] open in new tab
  13. Muzny, C.A.; Schwebke, J.R. Biofilms: An Underappreciated Mechanism of Treatment Failure and Recurrence in Vaginal Infections. Clin. Infect. Dis. 2015, 61, 601-606. [CrossRef] [PubMed] open in new tab
  14. Vodstrcil, L.A.; Muzny, C.A.; Plummer, E.L.; Sobel, J.D.; Bradshaw, C.S. Bacterial Vaginosis: Drivers of Recurrence and Challenges and Opportunities in Partner Treatment. BMC Med. 2021, 19, 194. [CrossRef] [PubMed] open in new tab
  15. Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon 2018, 4, e01067. [CrossRef] [PubMed] open in new tab
  16. Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [CrossRef] [PubMed] open in new tab
  17. Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon 2019, 5, e02192. [CrossRef] open in new tab
  18. Samrot, A.V.; Abubakar Mohamed, A.; Faradjeva, E.; Si Jie, L.; Hooi Sze, C.; Arif, A.; Chuan Sean, T.; Norbert Michael, E.; Yeok Mun, C.; Xiao Qi, N.; et al. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. Medicina 2021, 57, 839. [CrossRef] open in new tab
  19. Algburi, A.; Comito, N.; Kashtanov, D.; Dicks, L.M.T.; Chikindas, M.L. Control of Biofilm Formation: Antibiotics and Beyond. Appl. Environ. Microbiol. 2017, 83, e02508-16. [CrossRef] open in new tab
  20. Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [CrossRef] open in new tab
  21. Patterson, J.L.; Girerd, P.H.; Karjane, N.W.; Jefferson, K.K. Effect of Biofilm Phenotype on Resistance of Gardnerella Vaginalis to Hydrogen Peroxide and Lactic Acid. Am. J. Obs. Gynecol. 2007, 197, 170.e1-170.e7. [CrossRef] [PubMed] open in new tab
  22. Mashburn, J. Vaginal Infections Update. J. Midwifery Women's Health 2012, 57, 629-634. [CrossRef] [PubMed] open in new tab
  23. Masevhe, N.A.; McGaw, L.J.; Eloff, J.N. The Traditional Use of Plants to Manage Candidiasis and Related Infections in Venda, South Africa. J. Ethnopharmacol. 2015, 168, 364-372. [CrossRef] [PubMed] open in new tab
  24. Pharmaceutics 2022, 14, 740 19 of 23 open in new tab
  25. de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.D.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front. Microbiol. 2018, 9, 1351. [CrossRef] open in new tab
  26. Najafi, M.N.; Rezaee, R.; Najafi, N.N.; Mirzaee, F.; Burykina, T.I.; Lupuliasa, D.; Arsene, A.L.; Ghazanfarpour, M. Herbal Medicines against Bacterial Vaginosis in Women of Reproductive Age: A Systematic Review. Farmacia 2019, 67, 931-940. [CrossRef] open in new tab
  27. Saffari, E.; Mohammad-Alizadeh-Charandabi, S.; Adibpour, M.; Mirghafourvand, M.; Javadzadeh, Y. Comparing the Effects of Calendula Officinalis and Clotrimazole on Vaginal Candidiasis: A Randomized Controlled Trial. Women Health 2017, 57,1145-1160. [CrossRef] open in new tab
  28. Durić, K.; Kovčić Hadžiabdić, S.; Durić, M.; Nikšić, H.; Uzunović, A.; DžudževićČančar, H. Efficacy and Safety of Three Plant Extracts Based Formulations of Vagitories in the Treatment of Vaginitis: A Randomized Controlled Trial. Med. Glas. 2021, 18, 47-54. [CrossRef] open in new tab
  29. Cho, J.-H.; Jang, J.-B.; Lee, K.-S.; Kim, K.-J. Antibiotic Effect of Heat-Clearing Medicinals on Vaginal Microorganisms. J. Korean Obstet. Gynecol. 2006, 19, 175-190.
  30. Da, X.; Nishiyama, Y.; Tie, D.; Hein, K.Z.; Yamamoto, O.; Morita, E. Antifungal Activity and Mechanism of Action of Ou-Gon (Scutellaria Root Extract) Components against Pathogenic Fungi. Sci. Rep. 2019, 9, 1683. [CrossRef] open in new tab
  31. Bochořáková, H.; Paulová, H.; Slanina, J.; Musil, P.; Táborská, E. Main Flavonoids in the Root of Scutellaria Baicalensis Cultivated in Europe and Their Comparative Antiradical Properties. Phytother. Res. 2003, 17, 640-644. [CrossRef] open in new tab
  32. Hao, H.; Aixia, Y.; Dan, L.; Lei, F.; Nancai, Y.; Wen, S. Baicalin Suppresses Expression of Chlamydia Protease-like Activity Factor in Hep-2 Cells Infected by Chlamydia Trachomatis. Fitoterapia 2009, 7, 448-452. [CrossRef] [PubMed] open in new tab
  33. Wakabayashi, I. Inhibitory Effects of Baicalein and Wogonin on Lipopolysaccharide-Induced Nitric Oxide Production in Macrophages. Pharmacol. Toxicol. 1999, 84, 288-291. [CrossRef] [PubMed] open in new tab
  34. Piao, H.Z.; Jin, S.A.; Chun, H.S.; Lee, J.-C.; Kim, W.-K. Neuroprotective Effect of Wogonin: Potential Roles of Inflammatory Cytokines. Arch. Pharm. Res. 2004, 27, 930. [CrossRef] [PubMed] open in new tab
  35. Kim, D.H.; Kim, H.K.; Park, S.; Kim, J.Y.; Zou, Y.; Cho, K.H.; Kim, Y.S.; Kim, D.H.; Yu, B.P.; Choi, J.S.; et al. Short-Term Feeding of Baicalin Inhibits Age-Associated NF-KB Activation. Mech. Ageing Dev. 2006, 127, 719-725. [CrossRef] open in new tab
  36. Hsieh, C.-J.; Hall, K.; Ha, T.; Li, C.; Krishnaswamy, G.; Chi, D.S. Baicalein Inhibits IL-1β-and TNF-α-Induced Inflammatory Cytokine Production from Human Mast Cells via Regulation of the NF-KB Pathway. Clin. Mol. Allergy 2007, 5, 5. [CrossRef] open in new tab
  37. Lixuan, Z.; Jingcheng, D.; Wenqin, Y.; Jianhua, H.; Baojun, L.; Xiaotao, F. Baicalin Attenuates Inflammation by Inhibiting NF-KB Activation in Cigarette Smoke Induced Inflammatory Models. Pulm. Pharmacol. Ther. 2010, 23, 411-419. [CrossRef] open in new tab
  38. Tsai, C.-L.; Lin, Y.-C.; Wang, H.-M.; Chou, T.-C. Baicalein, an Active Component of Scutellaria Baicalensis, Protects against Lipopolysaccharide-Induced Acute Lung Injury in Rats. J. Ethnopharmacol. 2014, 153, 197-206. [CrossRef] open in new tab
  39. Mladěnka, P.; Macáková, K.; Filipský, T.; Zatloukalová, L.; Jahodář, L.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. In Vitro Analysis of Iron Chelating Activity of Flavonoids. J. Inorg. Biochem. 2011, 105, 693-701. [CrossRef] open in new tab
  40. Zhao, Y.; Li, H.; Gao, Z.; Xu, H. Effects of Dietary Baicalin Supplementation on Iron Overload-Induced Mouse Liver Oxidative Injury. Eur. J. Pharm. 2005, 509, 195-200. [CrossRef] open in new tab
  41. Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720-738. [CrossRef] open in new tab
  42. Oh, E.; Andrews, K.J.; Jeon, B. Enhanced Biofilm Formation by Ferrous and Ferric Iron through Oxidative Stress in Campylobacter Jejuni. Front. Microbiol. 2018, 9, 1204. [CrossRef] open in new tab
  43. Chen, T.; Dong, G.; Zhang, S.; Zhang, X.; Zhao, Y.; Cao, J.; Zhou, T.; Wu, Q. Effects of Iron on the Growth, Biofilm Formation and Virulence of Klebsiella Pneumoniae Causing Liver Abscess. BMC Microbiol. 2020, 20, 36. [CrossRef] [PubMed] open in new tab
  44. Banin, E.; Vasil, M.L.; Greenberg, E.P. Iron and Pseudomonas Aeruginosa Biofilm Formation. Proc. Natl. Acad. Sci. USA 2005, 102, 11076-11081. [CrossRef] [PubMed] open in new tab
  45. Lin, M.-H.; Shu, J.-C.; Huang, H.-Y.; Cheng, Y.-C. Involvement of Iron in Biofilm Formation by Staphylococcus Aureus. PLoS ONE 2012, 7, e34388. [CrossRef] [PubMed] open in new tab
  46. Page, M.G.P. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin. Infect Dis. 2019, 69, S529-S537. [CrossRef] open in new tab
  47. Tiwari, S.; Bahadur, P. Modified Hyaluronic Acid Based Materials for Biomedical Applications. Int. J. Biol. Macromol. 2019, 121, 556-571. [CrossRef] open in new tab
  48. Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic Acid and Its Biomedical Applications: A Review. Eng. Regen. 2020, 1, 102-113. [CrossRef] open in new tab
  49. Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic Acid-Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 241, 116364. [CrossRef] open in new tab
  50. Sato, H.; Takahashi, T.; Ide, H.; Fukushima, T.; Tabata, M.; Sekine, F.; Kobayashi, K.; Negishi, M.; Niwa, Y. Antioxidant Activity of Synovial Fluid, Hyaluronic Acid, and Two Subcomponents of Hyaluronic Acid. Synovial Fluid Scavenging Effect Is Enhanced in Rheumatoid Arthritis Patients. Arthritis Rheum. 1988, 31, 63-71. [CrossRef] open in new tab
  51. Romanò, C.L.; De Vecchi, E.; Bortolin, M.; Morelli, I.; Drago, L. Hyaluronic Acid and Its Composites as a Local Antimicro- bial/Antiadhesive Barrier. J. Bone Jt. Infect. 2017, 2, 63-72. [CrossRef] open in new tab
  52. Pharmaceutics 2022, 14, 740 20 of 23 open in new tab
  53. Delia, P.; Sansotta, G.; Pontoriero, A.; Iati, G.; De Salvo, S.; Pisana, M.; Potami, A.; Lopes, S.; Messina, G.; Pergolizzi, S. Clinical Evaluation of Low-Molecular-Weight Hyaluronic Acid-Based Treatment on Onset of Acute Side Effects in Women Receiving Adjuvant Radiotherapy after Cervical Surgery: A Randomized Clinical Trial. ORT 2019, 42, 212-218. [CrossRef] [PubMed] open in new tab
  54. Gustavino, C.; Sala, P.; Cusini, N.; Gravina, B.; Ronzini, C.; Marcolin, D.; Vellone, V.G.; Paudice, M.; Nappi, R.; Costantini, S.; et al. Efficacy and Safety of Prolonged-Release Hyaluronic Acid Derivative Vaginal Application in the Postpartum Period: A Prospective Randomised Clinical Trial. Ann. Med. 2021, 53, 1589-1597. [CrossRef] [PubMed] open in new tab
  55. dos Santos, C.C.M.; Uggioni, M.L.R.; Colonetti, T.; Colonetti, L.; Grande, A.J.; Da Rosa, M.I. Hyaluronic Acid in Postmenopause Vaginal Atrophy: A Systematic Review. J. Sex. Med. 2021, 18, 156-166. [CrossRef] [PubMed] open in new tab
  56. Fini, A.; Orienti, I. The Role of Chitosan in Drug Delivery. Am. J. Drug Deliv. 2003, 1, 43-59. [CrossRef] open in new tab
  57. Peña, A.; Sánchez, N.S.; Calahorra, M. Effects of Chitosan on Candida Albicans: Conditions for Its Antifungal Activity. BioMed Res. Int. 2013, 2013, e527549. [CrossRef] [PubMed] open in new tab
  58. Ahmed, S.; Ikram, S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achiev. Life Sci. 2016, 10, 27-37. [CrossRef] open in new tab
  59. Li, J.; Zhuang, S. Antibacterial Activity of Chitosan and Its Derivatives and Their Interaction Mechanism with Bacteria: Current State and Perspectives. Eur. Polym. J. 2020, 138, 109984. [CrossRef] open in new tab
  60. Qin, Y.; Li, P.; Guo, Z. Cationic Chitosan Derivatives as Potential Antifungals: A Review of Structural Optimization and Applications. Carbohydr. Polym. 2020, 236, 116002. [CrossRef] open in new tab
  61. Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [CrossRef] open in new tab
  62. Araujo, V.H.S.; de Souza, M.P.C.; Carvalho, G.C.; Duarte, J.L.; Chorilli, M. Chitosan-Based Systems Aimed at Local Application for Vaginal Infections. Carbohydr. Polym. 2021, 261, 117919. [CrossRef] open in new tab
  63. Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers 2018, 10, 267. [CrossRef] [PubMed] open in new tab
  64. Portero, A.; Remuñán-López, C.; Vila-Jato, J.L. Effect of Chitosan and Chitosan Glutamate Enhancing the Dissolution Properties of the Poorly Water Soluble Drug Nifedipine. Int. J. Pharm. 1998, 175, 75-84. [CrossRef] open in new tab
  65. Yeh, T.-H.; Hsu, L.-W.; Tseng, M.T.; Lee, P.-L.; Sonjae, K.; Ho, Y.-C.; Sung, H.-W. Mechanism and Consequence of Chitosan- Mediated Reversible Epithelial Tight Junction Opening. Biomaterials 2011, 32, 6164-6173. [CrossRef] [PubMed] open in new tab
  66. Chanaj-Kaczmarek, J.; Osmałek, T.; Szymańska, E.; Winnicka, K.; Karpiński, T.M.; Dyba, M.; Bekalarska-Dębek, M.; Cielecka- Piontek, J. Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae Baicalensis Radix Extract and Chitosan for Periodontal Diseases Treatment. Int. J. Mol. Sci. 2021, 22, 11319. [CrossRef] [PubMed] open in new tab
  67. ICH. Stability Testing Guidelines: Stability Testing of New Drug Substances and Products; ICH Steering Committee: Geneva, Switzer- land, 2003. Available online: https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products (accessed on 14 February 2022).
  68. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision C. 01, Gaussian, Inc., Wallingford CT, 2009 Search PubMed;(b) Y. Zhao and DG Truhlar. Theor. Chem. Acc. 2008, 120, 215.
  69. Dennington, R.; Keith, T.; Millam, J. GaussView; Version 5; open in new tab
  70. Semichem Inc.: Shawnee Mission, KS, USA, 2009.
  71. Owen, D.H.; Katz, D.F. A Vaginal Fluid Simulant. Contraception 1999, 59, 91-95. [CrossRef] open in new tab
  72. Dissolution test for solid dosage forms. In European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2020; Chapter 2.9.3. open in new tab
  73. Moore, J.W.; Flanner, H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64-75.
  74. Dinis, T.C.; Maderia, V.M.; Almeida, L.M. Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Arch. Biochem. Biophys. 1994, 315, 161-169. [CrossRef] open in new tab
  75. Studzińska-Sroka, E.; Dudek-Makuch, M.; Chanaj-Kaczmarek, J.; Czepulis, N.; Korybalska, K.; Rutkowski, R.; Łuczak, J.; Grabowska, K.; Bylka, W.; Witowski, J. Anti-Inflammatory Activity and Phytochemical Profile of Galinsoga Parviflora Cav. Molecules 2018, 23, 2133. [CrossRef] open in new tab
  76. Feng, Z.; Zhou, J.; Shang, X.; Kuang, G.; Han, J.; Lu, L.; Zhang, L. Comparative Research on Stability of Baicalin and Baicalein Administrated in Monomer and Total Flavonoid Fraction Form of Radix Scutellariae in Biological Fluids in Vitro. Pharm. Biol. 2017, 55, 1177-1184. [CrossRef] open in new tab
  77. DeNoyer, L.K.; Dodd, J.G. Smoothing and Derivatives in Spectroscopy. In Handbook of Vibrational Spectroscopy; open in new tab
  78. John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [CrossRef] open in new tab
  79. Xu, C.-H.; Liu, S.-L.; Zhao, S.-N.; Li, S.-Z.; Sun, S.-Q. Unveiling Ontogenesis of Herbal Medicine in Plant Chemical Profiles by Infrared Macro-Fingerprinting. Planta Med. 2013, 79, 1068-1076. [CrossRef] [PubMed] open in new tab
  80. Sip, S.; Paczkowska-Walendowska, M.; Rosiak, N.; Miklaszewski, A.; Grabańska-Martyńska, K.; Samarzewska, K.; Cielecka- Piontek, J. Chitosan as Valuable Excipient for Oral and Topical Carvedilol Delivery Systems. Pharmaceuticals 2021, 14, 712. [CrossRef] [PubMed] open in new tab
  81. Ding, X.; Gao, H.; Guo, X.; Wang, Z.; Yang, L.; Guan, Y.; Shi, J. Analysis of the 4th generation Scutellaria baicalensis Georgi with space mutagenesis via FTIR spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2009, 29, 1286-1288.
  82. Zhang, C.; Zhang, G.; Sun, S.; Tu, Y. Study on the identification of radix scutellariae and extract using Fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2010, 30, 1774-1779. [PubMed]
  83. Dennis, G.; Harrison, W.; Agnes, K.; Erastus, G. Effect of Biological Control Antagonists Adsorbed on Chitosan Immobilized Silica Nanocomposite on Ralstonia Solanacearum and Growth of Tomato Seedlings. Adv. Res. 2016, 6, 1-23. [CrossRef] open in new tab
  84. Thamilarasan, V.; Sethuraman, V.; Gopinath, K.; Balalakshmi, C.; Govindarajan, M.; Mothana, R.; Siddiqui, N.; Khaled, J.; Benelli, G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus Semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J. Clust. Sci. 2018, 29, 375-384. [CrossRef] open in new tab
  85. Zhao, L.; Duan, X.; Cao, W.; Ren, X.; Ren, G.; Liu, P.; Chen, J. Effects of Different Drying Methods on the Characterization, Dissolution Rate and Antioxidant Activity of Ursolic Acid-Loaded Chitosan Nanoparticles. Foods 2021, 10, 2470. [CrossRef] open in new tab
  86. Neto, C.G.T.; Giacometti, J.A.; Job, A.E.; Ferreira, F.C.; Fonseca, J.L.C.; Pereira, M.R. Thermal Analysis of Chitosan Based Networks. Carbohydr. Polym. 2005, 62, 97-103. [CrossRef] open in new tab
  87. Dey, S.; Al-Amin, M.; Rashid, T.; Sultan, Z.; Ashaduzzaman, M.; Sarker, M.; Shamsuddin, S. Preparation, Characterization and Performance Evaluation Of Chitosan As An Adsorbent For Remazol Red. Int. J. Latest Res. Eng. Technol. 2016, 2, 52-62. open in new tab
  88. Liao, S.-K.; Hung, C.-C.; Lim, M.-F. A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends. Macromol. Res. 2004, 12, 466-473. [CrossRef] open in new tab
  89. Perinelli, D.R.; Campana, R.; Skouras, A.; Bonacucina, G.; Cespi, M.; Mastrotto, F.; Baffone, W.; Casettari, L. Chitosan Loaded into a Hydrogel Delivery System as a Strategy to Treat Vaginal Co-Infection. Pharmaceutics 2018, 10, 23. [CrossRef] [PubMed] open in new tab
  90. Cirri, M.; Maestrelli, F.; Scuota, S.; Bazzucchi, V.; Mura, P. Development and Microbiological Evaluation of Chitosan and Chitosan-Alginate Microspheres for Vaginal Administration of Metronidazole. Int. J. Pharm. 2021, 598, 120375. [CrossRef] [PubMed] open in new tab
  91. Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. PH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [CrossRef] open in new tab
  92. Agnihotri, S.A.; Aminabhavi, T.M. Controlled Release of Clozapine through Chitosan Microparticles Prepared by a Novel Method. J. Control. Release 2004, 96, 245-259. [CrossRef] open in new tab
  93. Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415-421. [CrossRef] open in new tab
  94. Percival, S.L.; Salisbury, A.-M. The Efficacy of Tetrasodium EDTA on Biofilms. In Advances in Microbiology, Infectious Diseases and Public Health: Volume 9; Donelli, G., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; pp. 101-110. ISBN 978-3-319-79017-6. open in new tab
  95. Lefebvre, E.; Vighetto, C.; Di Martino, P.; Larreta Garde, V.; Seyer, D. Synergistic Antibiofilm Efficacy of Various Commercial Antiseptics, Enzymes and EDTA: A Study of Pseudomonas Aeruginosa and Staphylococcus Aureus Biofilms. Int. J. Antimicrob. Agents 2016, 48, 181-188. [CrossRef] open in new tab
  96. Raad, I.; Chatzinikolaou, I.; Chaiban, G.; Hanna, H.; Hachem, R.; Dvorak, T.; Cook, G.; Costerton, W. In Vitro and Ex Vivo Activities of Minocycline and EDTA against Microorganisms Embedded in Biofilm on Catheter Surfaces. Antimicrob. Agents Chemother. 2003, 47, 3580-3585. [CrossRef] [PubMed] open in new tab
  97. Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522-554. [CrossRef] open in new tab
  98. Silva-Dias, A.; Palmeira-de-Oliveira, A.; Miranda, I.M.; Branco, J.; Cobrado, L.; Monteiro-Soares, M.; Queiroz, J.A.; Pina-Vaz, C.; Rodrigues, A.G. Anti-Biofilm Activity of Low-Molecular Weight Chitosan Hydrogel against Candida Species. Med. Microbiol. Immunol. 2014, 203, 25-33. [CrossRef] open in new tab
  99. Felipe, V.; Breser, M.L.; Bohl, L.P.; Rodrigues da Silva, E.; Morgante, C.A.; Correa, S.G.; Porporatto, C. Chitosan Disrupts Biofilm Formation and Promotes Biofilm Eradication in Staphylococcus Species Isolated from Bovine Mastitis. Int. J. Biol. Macromol. 2019, 126, 60-67. [CrossRef] open in new tab
  100. Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds 2016, 28, 78-88.
  101. Altman, R.; Bedi, A.; Manjoo, A.; Niazi, F.; Shaw, P.; Mease, P. Anti-Inflammatory Effects of Intra-Articular Hyaluronic Acid: A Systematic Review. Cartilage 2019, 10, 43-52. [CrossRef] [PubMed] open in new tab
  102. Shanmugam, A.; Subhapradha, N.; Suman, S.; Ramasamy, P.; Ramachandran, S.; Shanmugam, V.; Srinivasan, A. Characterization of Biopolymer "Chitosan" from the Shell of Donacid Clam Donax Scortum (Linnaeus, 1758) and Its Antioxidant Activity. Int. J. Pharm. Pharm. Sci. 2012, 4, 460-465. open in new tab
  103. Chandrasekharan, A.; Hwang, Y.J.; Seong, K.-Y.; Park, S.; Kim, S.; Yang, S.Y. Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery. Pharmaceutics 2019, 11, 209. [CrossRef] open in new tab
  104. Denuzière, A.; Ferrier, D.; Domard, A. Interactions between Chitosan and Glycosaminoglycans (Chondroitin Sulfate and Hyaluronic Acid): Physicochemical and Biological Studies. Ann. Pharm. Fr. 2000, 58, 47-53. open in new tab
  105. Kang, K.; Fong, W.-P.; Tsang, P.W.-K. Antifungal Activity of Baicalein Against Candidakrusei Does Not Involve Apoptosis. Mycopathologia 2010, 170, 391-396. [CrossRef] [PubMed] open in new tab
  106. Serpa, R.; França, E.J.G.; Furlaneto-Maia, L.; Andrade, C.G.T.J.; Diniz, A.; Furlaneto, M.C.Y. 2012 In Vitro Antifungal Activity of the Flavonoid Baicalein against Candida Species. J. Med. Microbiol. 2012, 61, 1704-1708. [CrossRef] open in new tab
  107. Dai, B.-D.; Cao, Y.-Y.; Huang, S.; Xu, Y.-G.; Gao, P.-H.; Wang, Y.; Jiang, Y.-Y. Baicalein Induces Programmed Cell Death in Candida Albicans. J. Microbiol. Biotechnol. 2009, 19, 803-809.
  108. Cao, Y.; Dai, B.; Wang, Y.; Huang, S.; Xu, Y.; Cao, Y.; Gao, P.; Zhu, Z.; Jiang, Y. In Vitro Activity of Baicalein against Candida Albicans Biofilms. Int. J. Antimicrob. Agents 2008, 32, 73-77. [CrossRef] open in new tab
  109. Huang, S.; Cao, Y.Y.; Dai, B.D.; Sun, X.R.; Zhu, Z.Y.; Cao, Y.B.; Wang, Y.; Gao, P.H.; Jiang, Y.Y. In Vitro Synergism of Fluconazole and Baicalein against Clinical Isolates of Candida Albicans Resistant to Fluconazole. Biol. Pharm. Bull. 2008, 31, 2234-2236. [CrossRef] open in new tab
  110. Fu, Z.; Lu, H.; Zhu, Z.; Yan, L.; Jiang, Y.; Cao, Y. Combination of Baicalein and Amphotericin B Accelerates Candida Albicans Apoptosis. Biol. Pharm. Bull. 2011, 34, 214-218. [CrossRef] open in new tab
  111. Yang, S.; Fu, Y.; Wu, X.; Zhou, Z.; Xu, J.; Zeng, X.; Kuang, N.; Zeng, Y. Baicalin Prevents Candida Albicans Infections via Increasing Its Apoptosis Rate. Biochem. Biophys. Res. Commun. 2014, 451, 36-41. [CrossRef] open in new tab
  112. Chen, K.; Wu, W.; Hou, X.; Yang, Q.; Li, Z. A Review: Antimicrobial Properties of Several Medicinal Plants Widely Used in Traditional Chinese Medicine. Food Qual. Saf. 2021, 5, fyab020. [CrossRef] open in new tab
  113. Chen, Y.; Liu, T.; Wang, K.; Hou, C.; Cai, S.; Huang, Y.; Du, Z.; Huang, H.; Kong, J.; Chen, Y. Baicalein Inhibits Staphylococcus Aureus Biofilm Formation and the Quorum Sensing System In Vitro. PLoS ONE 2016, 11, e0153468. [CrossRef] open in new tab
  114. Borges, S.; Silva, J.; Teixeira, P. The Role of Lactobacilli and Probiotics in Maintaining Vaginal Health. Arch. Gynecol. Obs. 2014, 289, 479-489. [CrossRef] [PubMed] open in new tab
  115. Felt, O.; Carrel, A.; Baehni, P.; Buri, P.; Gurny, R. Chitosan as Tear Substitute: A Wetting Agent Endowed with Antimicrobial Efficacy. J. Ocul. Pharmacol. Ther. 2000, 16, 261-270. [CrossRef] [PubMed] open in new tab
  116. Rabea, E.I.; Badawy, M.E.-T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457-1465. [CrossRef] open in new tab
  117. Avadi, M.R.; Sadeghi, A.M.M.; Tahzibi, A.; Bayati, K.; Pouladzadeh, M.; Zohuriaan-Mehr, M.J.; Rafiee-Tehrani, M. Diethylmethyl Chitosan as an Antimicrobial Agent: Synthesis, Characterization and Antibacterial Effects. Eur. Polym. J. 2004, 40, 1355-1361. [CrossRef] open in new tab
  118. Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan-Metal Complexes as Antimicrobial Agent: Synthesis, Characterization and Structure-Activity Study. Polym. Bull. 2005, 55, 105-113. [CrossRef] open in new tab
  119. Hu, Y.; Du, Y.; Wang, X.; Feng, T. Self-Aggregation of Water-Soluble Chitosan and Solubilization of Thymol as an Antimicrobial Agent. J. Biomed. Mater. Res. A 2009, 90, 874-881. [CrossRef] open in new tab
  120. Raafat, D.; Sahl, H.-G. Chitosan and Its Antimicrobial Potential-a Critical Literature Survey. Microb. Biotechnol. 2009, 2, 186-201. [CrossRef] [PubMed] open in new tab
  121. Gómez-Estaca, J.; López de Lacey, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable Gelatin-Chitosan Films Incorporated with Essential Oils as Antimicrobial Agents for Fish Preservation. Food Microbiol. 2010, 27, 889-896. [CrossRef] [PubMed] open in new tab
  122. Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51-63. [CrossRef] [PubMed] open in new tab
  123. Shih, P.-Y.; Liao, Y.-T.; Tseng, Y.-K.; Deng, F.-S.; Lin, C.-H. A Potential Antifungal Effect of Chitosan Against Candida Albicans Is Mediated via the Inhibition of SAGA Complex Component Expression and the Subsequent Alteration of Cell Surface Integrity. Front. Microbiol. 2019, 10, 602. [CrossRef] [PubMed] open in new tab
  124. Lo, W.-H.; Deng, F.-S.; Chang, C.-J.; Lin, C.-H. Synergistic Antifungal Activity of Chitosan with Fluconazole against Candida Albicans, Candida Tropicalis, and Fluconazole-Resistant Strains. Molecules 2020, 25, 5114. [CrossRef] [PubMed] open in new tab
  125. Kraus, D.; Peschel, A. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides. In Antimicrobial Peptides and Human Disease; open in new tab
  126. Shafer, W.M., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 231-250. ISBN 978-3-540-29916-5.
  127. Chen, R.-H.; Domard, A.; Muzzarelli, R.A.A.; Tokura, S.; Wang, D.-M. Advances in Chitin/Chitosan Science and Their Applica- tions. Carbohydr. Polym. 2011, 84, 695. [CrossRef] open in new tab
  128. Rohde, M. The Gram-Positive Bacterial Cell Wall. Microbiol. Spectr. 2019, 7, 7.3.10. [CrossRef] open in new tab
  129. Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.-G. Insights into the Mode of Action of Chitosan as an Antibacterial Compound. Appl. Environ. Microbiol. 2008, 74, 3764-3773. [CrossRef] open in new tab
  130. Kravanja, G.; Primožič, M.; Knez, Ž.; Leitgeb, M. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 1960. [CrossRef] open in new tab
  131. Atai, Z.; Atai, M.; Amini, J.; Salehi, N. In Vivo Study of Antifungal Effects of Low-Molecular-Weight Chitosan against Candida Albicans. J. Oral Sci. 2017, 59, 425-430. [CrossRef] open in new tab
  132. Palma-Guerrero, J.; Lopez-Jimenez, J.A.; Pérez-Berná, A.J.; Huang, I.-C.; Jansson, H.-B.; Salinas, J.; Villalaín, J.; Read, N.D.; Lopez- Llorca, L.V. Membrane Fluidity Determines Sensitivity of Filamentous Fungi to Chitosan. Mol. Microbiol. 2010, 75, 1021-1032. [CrossRef] open in new tab
  133. Kumariya, R.; Sood, S.K.; Rajput, Y.S.; Saini, N.; Garsa, A.K. Increased Membrane Surface Positive Charge and Altered Membrane Fluidity Leads to Cationic Antimicrobial Peptide Resistance in Enterococcus Faecalis. Biochim. Biophys. Acta 2015, 1848, 1367-1375. [CrossRef] [PubMed] open in new tab
  134. Pharmaceutics 2022, 14, 740 23 of 23 open in new tab
  135. Ganan, M.; Lorentzen, S.B.; Aam, B.B.; Eijsink, V.G.H.; Gaustad, P.; Sørlie, M. Antibiotic Saving Effect of Combination Therapy through Synergistic Interactions between Well-Characterized Chito-Oligosaccharides and Commercial Antifungals against Medically Relevant Yeasts. PLoS ONE 2019, 14, e0227098. [CrossRef] [PubMed] open in new tab
  136. Goy, R.C.; Morais, S.T.B.; Assis, O.B.G. Evaluation of the Antimicrobial Activity of Chitosan and Its Quaternized Derivative on E. Coli and S. Aureus Growth. Rev. Bras. De Farmacogn. 2016, 26, 122-127. [CrossRef] open in new tab
  137. Wang, L.; Liu, F.; Jiang, Y.; Chai, Z.; Li, P.; Cheng, Y.; Jing, H.; Leng, X. Synergistic Antimicrobial Activities of Natural Essential Oils with Chitosan Films. J. Agric. Food Chem. 2011, 59, 12411-12419. [CrossRef] open in new tab
  138. Kim, J.-H.; Yu, D.; Eom, S.-H.; Kim, S.-H.; Oh, J.; Jung, W.-K.; Kim, Y.-M. Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria. Mar. Drugs 2017, 15, 167. [CrossRef] open in new tab
  139. Etemadi, S.; Barhaghi, M.H.S.; Leylabadlo, H.E.; Memar, M.Y.; Mohammadi, A.B.; Ghotaslou, R. The Synergistic Effect of Turmeric Aqueous Extract and Chitosan against Multidrug-Resistant Bacteria. New Microbes New Infect. 2021, 41, 100861. [CrossRef] open in new tab
Verified by:
No verification

seen 132 times

Recommended for you

Meta Tags