Abstract
Friction stir welding (FSW) of polymeric materials has recently attracted significant attention. Herein, we present the effect of the tool pin profile on the FSW of high-density polyethylene (HDPE) joints through joint experimental analysis and thermomechanical simulations. For analysis of pin profile effects on the thermomechanical properties of HDPE joints, frustum (FPT), cubic (CPT), and triangular (TPT) pin shapes were selected in this study. This research investigated the heat generation of the parts of the different tools as well as heat flux (internal and surface). The results revealed that the heat generation in pins with more edges (cubic (96 °C) and triangular (94 °C)) was greater than in pins with a smooth shape (frustum (91 °C)). The higher heat generation caused the heat flux on the surface of the HDPE from the cubic pin profile to be greater than for other joints. Due to the properties of HDPE, higher heat generation caused higher material velocity in the stirring zone, where the velocity of the materials in TPT, CPT, and FPT pins were 0.41 m/s, 0.42 m/s, and 0.4 m/s, respectively. The simulation results show sharp-edged pins, such as triangular and cubic, lead to over-stirring action and internal voids formed along the joint line. Furthermore, the simulation results indicated that the size of the stirred zones (SZs) of the FPT, TPT, and CPT samples were 17 mm2, 19 mm2, and 21 mm2, respectively, which is around three times the corresponding values in the HAZ.
Citations
-
2 1
CrossRef
-
0
Web of Science
-
2 4
Scopus
Authors (7)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/polym14214632
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Polymers
no. 14,
ISSN: 2073-4360 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- Khalaf H. I., Al-Sabur R., Demiral M., Tomków J., Łabanowski J., Abdullah M. E., Derazkola H. A.: The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW// Polymers -Vol. 14,iss. 21 (2022), s.4632-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/polym14214632
- Sources of funding:
-
- Statutory activity/subsidy
- Verified by:
- Gdańsk University of Technology
seen 103 times
Recommended for you
Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation
- S. Chupradit,
- D. O. Bokov,
- W. Suksatan
- + 4 authors
Thermo-Mechanical Simulation of Underwater Friction Stir Welding of Low Carbon Steel
- S. Memon,
- J. Tomków,
- H. A. Derazkola
Effects of Noncontact Shoulder Tool Velocities on Friction Stir Joining of Polyamide 6 (PA6)
- R. Al-Sabur,
- H. I. Khalaf,
- A. Świerczyńska
- + 2 authors
Effect of Pin Shape on Thermal History of Aluminum-Steel Friction Stir Welded Joint: Computational Fluid Dynamic Modeling and Validation
- D. O. Bokov,
- M. A. Jawad,
- W. Suksatan
- + 4 authors