The relationship between phytochemical composition and biological activities of differently pigmented varieties of berry fruits; Comparison between embedded in food matrix and isolated anthocyanins. - Publication - Bridge of Knowledge

Search

The relationship between phytochemical composition and biological activities of differently pigmented varieties of berry fruits; Comparison between embedded in food matrix and isolated anthocyanins.

Abstract

The aim of this research was to correlate the composition of phenolic compounds and bioactivities (antioxidant, cytotoxic, antigenotoxic, and influence on selected enzymatic activities) exhibited by extracts from differently pigmented raspberry (yellow and red), grape (white and red), mulberry (white and black), and currant (white, red, and black) varieties. It was presumed that phytocomplexes of the same species will be similar while differing significantly only by the content of anthocyanins in colored varieties, which will impact biological properties. Additionally, to compare food matrix embedded and isolated anthocyanins, the influence of purified solution, in concentrations matching the total concentration of anthocyanins in appropriate colored plant samples, on investigated biological activities was studied. The phenolic compound composition and antioxidant profiles showed that anthocyanin content was correlated only with antioxidant capacity of tested plant extracts. The other determined biological activities failed to reveal any simple relationship between chemopreventive potential and anthocyanin composition in fruits studied nor any similarity to biological properties of isolated cyanidin-3-O-glucoside. These observations indirectly support the food synergy concept, that points to interactions between different phytochemicals as a factor deciding about the final bioactivity of edible plants.

Citations

  • 2 5

    CrossRef

  • 0

    Web of Science

  • 2 7

    Scopus

Cite as

Full text

download paper
downloaded 33 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Foods no. 8, pages 646 - 656,
ISSN: 2304-8158
Language:
English
Publication year:
2019
Bibliographic description:
Koss-Mikołajczyk I., Kusznierewicz B., Bartoszek-Pączkowska A.: The relationship between phytochemical composition and biological activities of differently pigmented varieties of berry fruits; Comparison between embedded in food matrix and isolated anthocyanins.// Foods -Vol. 8,iss. 12 (2019), s.646-656
DOI:
Digital Object Identifier (open in new tab) 10.3390/foods8120646
Bibliography: test
  1. Rahman, T.; Hosen, I.; Islam, M.M.T.; Shekhar, I. Oxidative stress and human health. Adv. Biosci. Biotechnol. 2012, 3, 997-1019. [CrossRef] open in new tab
  2. Miyazawa, T.; Nakagawa, K.; Kudo, M.; Muraishi, K.; Someya, K. Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3, 5-diglucoside, into rats and humans. J. Agric. Food Chem. 1999, 47, 1083-1091. [CrossRef] [PubMed] open in new tab
  3. Wang, L.S.; Hecht, S.S.; Carmella, S.G.; Yu, N.; Larue, B.; Henry, C.; McIntyre, C.; Rocha, C.; Lechner, J.F.; Stoner, G.D. Anthocyanins in black raspberries prevent esophageal tumors in rats. Cancer Prev. Res. 2009, 2, 84-93. [CrossRef] [PubMed] open in new tab
  4. Faria, A.; Pestana, D.; Teixeira, D.; de Freitas, V.; Mateus, N.; Calhau, C. Blueberry anthocyanins and pyruvic acid adducts: Anticancer properties in breast cancer cell lines. Phytother. Res. 2010, 24, 1862-1869. [CrossRef] [PubMed] open in new tab
  5. Li, D.; Zhang, Y.; Liu, Y.; Sun, R.; Xia, N. Purified anthocyanin supplementation reduces dyslipidemia, enhances anti-oxidant capacity, and prevents insulin resistance in diabetic patients. J. Nutr. 2015, 145, 742-748. [CrossRef] open in new tab
  6. Kwon, S.H.; Ahn, I.S.; Kim, S.O.; Kong, C.; Chung, H.; Do, M.; Park, K. Anti-obesity and hypolipidemic effects of black soybean anthocyanins. J. Med. Food 2007, 10, 552-556. [CrossRef] open in new tab
  7. Cooke, D.; Steward, W.P.; Gescher, A.J.; Marczyło, T. Anthocyanins from fruits and vegetables-Does bright colour signal cancer chemopreventive activity? Eur. J. Cancer 2005, 41, 1931-1940. [CrossRef] open in new tab
  8. Dudley, J.I.; Lekli, I.; Mukhrjee, S.; Das, M.; Bartelli, A.A.; Das, D.K. Does white wine qualify for French paradox? Comparison of the cardioprotective effects of red and white wines and their constituents: Resveratrol, tyrosol and hydroxytyrosol. J. Agric. Food Chem. 2008, 20, 9362-9373. [CrossRef] open in new tab
  9. Koss-Mikołajczyk, I.; Kusznierewicz, B.; Wiczkowski, W.; Płatosz, N.; Bartoszek, A. Phytochemical composition and biological activities of differently pigmented cabbage (Brassica oleracea var. capitata) and cauliflower (Brassica oleracea var. botrytis) varieties. J. Sci. Food Agric. 2019, 99, 5499-5507. open in new tab
  10. Määttä, K.; Kamal-Eldin, A.; Törrönen, R. Phenolic compounds in berries of black, red, green and white currants (Ribes sp.). Antioxid. Redox Signal. 2001, 3, 981-993. [CrossRef] open in new tab
  11. Cejudo-Bastante, M.J.; Chaalal, M.; Louileche, H.; Parrado, J.; Heredia, F.J. Betalain profile, phenolic content, and color characterization of different parts and varieties of Opuntia ficus-indica. J. Agric. Food Chem. 2015, 62, 8491-8499. [CrossRef] [PubMed] open in new tab
  12. Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380-1384. [CrossRef] open in new tab
  13. Matsufuji, H.; Ishikawa, K.; Nunomura, O.; Chino, M.; Takeda, M. Antioxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annum L.). Int. J. Food Sci. Technol. 2007, 42, 1482-1488. [CrossRef] open in new tab
  14. Zhou, C.; Xu, C.; Sun, C.; Li, X.; Chen, K. Carotenoids in white and red-fleshed loquat fruits. J. Agric. Food Chem. 2007, 55, 7822-7830. [CrossRef] [PubMed] open in new tab
  15. Sumaya-Martínez, M.T.; Cruz-Jaime, S.; Madrigal-Santillán, E.; García-Peredes, J.D.; Coriño-Cortés, R.; Cruz-Cansino, N.; Valadez-Vega, C.; Martinez-Cardenas, L.; Alanís-García, E. Betalain, ascorbic acid, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pear. Int. J. Mol. Sci. 2011, 12, 6452-6468. [CrossRef] open in new tab
  16. Sánchez-Salceo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernandéz, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point of the assessment of their beneficial properties. J. Funct. Foods 2015, 12, 399-408. [CrossRef] open in new tab
  17. Shon, M.; Choi, S.; Kahng, G.; Nam, S.; Sung, N. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 2004, 42, 659-666. [CrossRef] open in new tab
  18. García-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamón, E. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014, 161, 216-223. [CrossRef] open in new tab
  19. Koss-Mikołajczyk, I.; Kusznierewicz, B.; Wiczkowski, W.; Sawicki, T.; Bartoszek, A. The comparison of betalain composition and chosen biological activities for differently pigmented prickly pear (Opuntia ficus-indica) and beetroot (Beta vulgaris) varieties. Int. J. Food Sci. Nutr. 2019, 70, 442-452. [CrossRef] open in new tab
  20. Kim, H.; Choi, H.; Moon, J.Y.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2011, 76, 38-45. [CrossRef] open in new tab
  21. Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A. Phenolic Composition and Antioxidant Properties of Polish Blue-Berried Honeysuckle Genotypes by HPLC-DAD-MS, HPLC Postcolumn Derivatization with ABTS or FC, and TLC with DPPH Visualization. J. Agric. Food Chem. 2012, 60, 1755-1760. [CrossRef] [PubMed] open in new tab
  22. Kusznierewicz, B.; Piasek, A.; Bartoszek, A.; Namieśnik, J. Application of a commercially available derivatization instrument and commonly used reagents to HPLC on-line determination of antioxidants. J. Food Compos. Anal. 2011, 24, 1073-1080. [CrossRef] open in new tab
  23. Koss-Mikołajczyk, I.; Pilipczuk, T.; Lewandowska, A.; Kusznierewicz, B.; Bartoszek, A. Composition of bioactive secondary metabolites and mutagenicity of elderberry (Sambucus nigra L.) fruits at different stages of ripeness. Acta Aliment. 2016, 45, 442-451. [CrossRef] open in new tab
  24. Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 1996, 239, 70-76. [CrossRef] open in new tab
  25. Koss-Mikołajczyk, I.; Kusznierewicz, B.; Namieśnik, J.; Bartoszek, A. Juices from non-typical edible fruits as health-promoting acidity regulators for food industry. LWT Food Sci. Technol. 2015, 64, 845-852. [CrossRef] open in new tab
  26. Koss-Mikołajczyk, I.; Baranowska, M.; Todorovic, V.; Albini, A.; Sansone, C.; Andreoletti, P.; Cherkaoui-Malki, M.; Lizard, G.; Noonan, D.; Sobajic, S.; et al. Prophylaxis of Non-communicable Diseases: Why Fruits and Vegetables may be Better Chemopreventive Agents than Dietary Supplements Based on Isolated Phytochemicals? Curr. Pharm. Des. 2019, 25, 1847-1860. [CrossRef] open in new tab
  27. Piekarska, A.; Kołodziejski, D.; Pilipczuk, T.; Bodnar, M.; Konieczka, P.; Kusznierewicz, B.; Hanschen, F.S.; Schreiner, M.; Cyprys, J.; Groszewska, M.; et al. The influence of selenium addition during germination of Brassica seeds on health-promoting potential of sprouts. Int. J. Food Sci. Nutr. 2014, 65, 692-702. [CrossRef] open in new tab
  28. Zia-Ul-Haq, M.;Ćavar, S.; Qayum, M.; Imran, I.; De Feo, V. Compositional studies: Antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int. J. Mol. Sci. 2011, 12, 8846-8861. [CrossRef] open in new tab
  29. Jia, N.; Xiongm, Y.; Kong, B.; Liu, Q.; Xia, X. Radical scavenging activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis. J. Funct. Foods 2012, 4, 382-390. [CrossRef] open in new tab
  30. Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Viskeliene, R.; Bobinas, C. Impact of various factors on the composition and stability of black currant anthocyanins. Food Res. Int. 2005, 38, 867-871. [CrossRef] open in new tab
  31. Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Impact of various factors on the composition and stability of black currant anthocyanins. Food Res. Int. 2010, 58, 3901-3909. open in new tab
  32. Katsube, N.; Iwashita, K.; Tsashida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68-75. [CrossRef] [PubMed] open in new tab
  33. Olsson, M.E.; Gustavsson, K.; Andersson, S.; Nilsson, A.; Duan, R. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004, 52, 7264-7271. [CrossRef] [PubMed] open in new tab
  34. Wu, Q.K.; Koponen, J.M.; Mykkänen, H.M.; Törrönen, A.R. Berry phenolic extracts modulate the expression of p21 WAF1 and Bax but not Bcl-2 in HT-29 colon cancer cells. J. Agric. Food Chem. 2007, 55, 1156-1163. [CrossRef] open in new tab
  35. Bishayee, A.; Háznagy-Radnai, E.; Mbimba, T.; Sipos, P.; Morazzoni, P.; Darvesh, A.S.; Bhatia, D.; Hohmann, J. Anthocyanin-rich black currant extract suppresses the growth of human hepatocellular carcinoma cells. Nat. Prod. Commun. 2010, 5, 1613-1618. [CrossRef] open in new tab
  36. Moon, Y.J.; Wang, X.; Morris, M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro 2006, 20, 187-210. [CrossRef] open in new tab
  37. Shih, P.H.; Yeh, C.T.; Yen, G.C. Anthocyanins induce theactivation of phase II enzymes through the antioxidantresponse element pathway against oxidative stress inducedapoptosis. J. Agric. Food Chem. 2007, 55, 9427-9435. [CrossRef] open in new tab
  38. Soriano Sancho, R.A.; Pastore, G.M. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res. Int. 2012, 46, 378-386. [CrossRef] open in new tab
  39. McDougal, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 2005, 53, 2760-2766. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 103 times

Recommended for you

Meta Tags