Thermal Biomass Conversion: A Review - Publication - Bridge of Knowledge

Search

Thermal Biomass Conversion: A Review

Abstract

In this paper, the most important methods of thermal conversion of biomass, such as: hydrothermal carbonization (180–250 °C), torrefaction (200–300 °C), slow pyrolysis (carbonization) (300–450 °C), fast pyrolysis (500–800 °C), gasification (800–1000 °C), supercritical steam gasification, high temperature steam gasification (>1000 °C) and combustion, were gathered, compared and ranked according to increasing temperature. A comprehensive model of thermal conversion as a function of temperature, pressure and heating rate of biomass has been provided. For the most important, basic process, which is pyrolysis, five mechanisms of thermal decomposition kinetics of its components (lignin, cellulose, hemicellulose) were presented. The most important apparatuses and implementing devices have been provided for all biomass conversion methods excluding combustion. The process of combustion, which is energy recycling, was omitted in this review of biomass thermal conversion methods for two reasons. Firstly, the range of knowledge on combustion is too extensive and there is not enough space in this study to fully discuss it. Secondly, the authors believe that combustion is not an environmentally-friendly method of waste biomass utilization, and, in the case of valuable biomass, it is downright harmful. Chemical compounds contained in biomass, such as biochar, oils and gases, should be recovered and reused instead of being simply burnt—this way, non-renewable fuel consumption can be reduced.

Citations

  • 6 9

    CrossRef

  • 0

    Web of Science

  • 7 4

    Scopus

Cite as

Full text

download paper
downloaded 214 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Processes no. 8,
ISSN: 2227-9717
Language:
English
Publication year:
2020
Bibliographic description:
Lewandowski W., Ryms M., Kosakowski W.: Thermal Biomass Conversion: A Review// Processes -Vol. 8,iss. 5 (2020), s.516-
DOI:
Digital Object Identifier (open in new tab) 10.3390/pr8050516
Bibliography: test
  1. Jensen, T.B. Purifying White Charcoal. Sort of Coal, Copenhagen, Denmark, May 2009. Available online: http://sortofcoal.com (accessed on 20 April 2020).
  2. Lewandowski, W.M.; Radziemska, E.; Ryms, M.; Ostrowski, P. Modern methods of thermochemical biomass conversion into gas, liquid and solid fuels. Ecol. Chem. Eng. S 2011, 18, 39-47. open in new tab
  3. Bridgwater, A.V. Biomass Pyrolysis-A Guide to UK Capabilities; Aston University Bioenergy Research Group: Aston, UK, May 2011, pp. 1-26. open in new tab
  4. Hitzl, M.; Corma Canós, A.; Pomares Garcia, F.; Renz, M. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal. Today 2015, 257, 154-159. doi:10.1016/j.cattod.2014.09.024. open in new tab
  5. Bergman, P.C.A. Combined Torrefaction and Pelletisation: The TOP Process; ECN-C-05-073; 2005 Available online: https://publications.tno.nl/publication/34628560/S7JA61/c05073.pdf (accessed on 20 April 2020). open in new tab
  6. Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D.Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel 2008, 87, 2493-2501. doi:10.1016/j.fuel.2008.02.015. open in new tab
  7. Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145-4169. doi:10.1039/C6GC00911E. open in new tab
  8. Bulushev, D.A.; Ross, J.R.H. Catalysis for to fuels via pyrolysis and gasification : A review. Catal. Today 2011, 171, 1-13. doi:10.1016/j.cattod.2011.02.005. open in new tab
  9. Bridgwater, A.V. The production of biofuels and renewable chemicals by fast pyrolysis of biomass. Int. J. Glob. Energy Issues 2007, 27, 160-203. doi:10.1504/IJGEI.2007.013654. open in new tab
  10. Carlson, T.R.; Cheng, Y.-T.; Jae, J.; Huber, G.H. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. 2011, 4, 145-161. doi:10.1039/C0EE00341G. open in new tab
  11. Kabir, G.; Hameed, B.H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. 2017, 70, 945-967. doi:10.1016/j.rser.2016.12.001. open in new tab
  12. Bridgwater, A.V. Production of high-grade fuels and chemicals from catalytic pyrolysis of biomass. Catal. Today 1996, 29, 285-295. doi:10.1016/0920-5861(95)00294-4. open in new tab
  13. Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions, Ind. Eng. Chem. Res. 1997, 36, 1507-1518. doi:10.1021/ie960396g. open in new tab
  14. Cortazar, M.; Lopez, G.; Alvarez, J.; Amutio, M.; Bilbao, J.; Olazar, M. Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed. Fuel 2019, 253, 1446-1456. doi:10.1016/j.fuel.2019.05.094. open in new tab
  15. Hua, X.; Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem. 2019, 39, 109-143. doi:10.1016/j.jechem.2019.01.024. open in new tab
  16. Reed, T.B.; Golden, A.D. Handbook of Biomass Downdraft Gasifier Engine System. In Solar Technical Information Program, Solar Energy Research Institute; U.S. GPO: Golden, CO, USA, 1988. open in new tab
  17. Lewandowski, W.M.; Ryms, M. Biofuels-Renewable, Pro-Ecological Energy Sources; WNT: Warszawa, Poland, 2013.
  18. Shafizadeh, F. Pyrolysis and combustion of cellulosic materials. Adv. Carbohydr. Chem. 1968, 23, 419. doi:10.1016/S0096-5332(08)60173-3. open in new tab
  19. Shafizadeh, F. Pyrolytic Reactions and Products of Biomass, w Fundamentals of Thermochemical Biomass Conversion; open in new tab
  20. Overend, B.P., Milne, T.A., Mudge, L.K., Eds.; Elsevier Applied Science Publishers: New York, NY, USA, 1985, pp. 183-218. doi:10.1002/cjce.5450650624. open in new tab
  21. Antal, Jr., M.J. Biomass Pyrolysis: A Review of the Literature Part 1 -Carbohydrate Pyrolysis. In Adv. In Solar Energ., Springer: Boston, MA, USA, 1985, 61-111. open in new tab
  22. Kilzer, F.J.; Broido, A. Speculations on the nature of cellulose pyrolysis. Pyrodynamics 1965, 2, 151.
  23. Piskorz, J.; Radlein, G.; Scott, D.S.; Czernik, S. Liquid products from the fast pyrolysis of wood ans cellulose. In Proceedings of the Research in Thermochemical Biomass Conversion, Phenix, AZ, USA, May 2-6, 1988; Bridgwater, A.V., Kuester, J.L., Eds.; Elsevier Applied Science Publishers: London, UK; New York, NY, USA, 1988; p. 557. open in new tab
  24. Shen, D.K.; Gu, S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol. 2009, 100, 6496-6504. doi:10.1016/j.biortech.2009.06.095. open in new tab
  25. Evans, R.J.; Milne, T.A. Molecular characterization of the pyrolysis of biomass fundamentals. Energy Fuels 1987, 1, 123-137. doi:10.1021/ef00002a001. open in new tab
  26. Evans, R.J.; Milne, T.A. Applied mechanistic studies of biomass pyrolysis. In Proceedings of the 1985
  27. Biomass Thermochemical Conversion Contractors' Meeting, Minneapolis, MN, USA, 15-16 October 1985; open in new tab
  28. Milne, T.A. Pyrolysis thermal behaviour of biomass below 600 °C. In A Survey of Biomass Gasification; Solar Energy Research Institute: Colorado, USA, SERI TR-33-239; July 1979; Volume II, pp. 95-132. Available online: https://www.nrel.gov/docs/legosti/old/239-2.pdf (accessed on 20 April 2020).
  29. Solres, E.J.; Elder, T.J. Pyrolysis. In Organic Chemicals from Biomass; Goldstein, I.S., Ed.; CRC Press: Boca Raton, FL, USA, 1981; pp. 63-100. open in new tab
  30. Tang, W.K. Effect of inorganic salts on pyrolysis of wood, alpha cellulose and lignin. In US Forest Service Research Paper; open in new tab
  31. Amtal, M.J., Jr.; Biomass pyrolysis: Review of the literature Part I-Lignocellulose Pyrolysis. In Advances in Solar Energy; Boer, K.W., Duffie, J.A., Eds.; Plenum Press: New York, NY, USA, 1985; Volume 2, p. 175. open in new tab
  32. Diebold, J.P. Proceedings of the Specialists' Workshop on the Fast Pyrolysis of Biomass, Copper Mountain, CO, USA; Solar Energy Research Institute: Golden, CO, USA, October 1980; SERI/CP-622-1096. open in new tab
  33. Thrän, D.; Janet, W.; Kay, S.; Jaap, K.; Jaap, K.; Michiel, C.; Jörg, M.; Collins, N.; Jaap, K.; Eija, A.; Stefan, M.; et al. Moving torrefaction towards market introduction-Technical improvements and economic- environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy 2016, 89, 184-200. doi:10.1016/j.biombioe.2016.03.004. open in new tab
  34. Tumuluru, J.S.; Sokhansanj, S.; Wright, C.T.; Hess, J.R.; Boardman, R.D. A Review on Biomass Torrefaction Process and Product Properties. In Proceedings of the S-1041 Symposium on Thermochemical Conversion; Oklahoma State University, Stillwater, OK, USA, 2 August 2011.
  35. Kumar, L.; Koukoulas, A.A.; Mani, S.; Satyavolu, J. Integrating Torrefaction in the Wood Pellet Industry: A Critical Review. Energy Fuels 2017, 31, 37−54. doi:10.1021/acs.energyfuels.6b02803. open in new tab
  36. Stelt, van der, M.J.C. Chemistry and Reaction Kinetics of Biowaste Torrefaction; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2011. doi:10.6100/IR695294. open in new tab
  37. Wild, M. Update on the Status of Torrefaction as Biomass Upgrading Technology. In Proceedings of the IEA Bioenergy Conference, Berlin, Germany, October 27-29, 2015. open in new tab
  38. Bridgwater, A.V. Biomass Pyrolysis; open in new tab
  39. Cheng, X.; Huang, Z.; Wang, Z.; Ma, C.; Chen, S. A novel on-site wheat straw pretreatment method: Enclosed torrefaction. Bioresour. Technol. 2019, 281, 48-55. doi:10.1016/j.biortech.2019.02.075. open in new tab
  40. Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847-866. doi:10.1016/j.rser.2014.12.039. open in new tab
  41. Zinchik, S. Paddle Mixer-Extrusion Reactor for Torrefaction and Pyrolysis. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2019. Available online: htps://digitalcommons.mtu.edu/etdr/906 (accessed on 20 April 2020).
  42. Kumar, P.; Barrett, D.; Delwiche, M.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729. doi:10.1021/ie801542g. open in new tab
  43. Boskovic, A. Biomass Torrefaction-Grindability and Dust Explosibility;
  44. Tumuluru, J.S. A review on biomass torrefaction proces and product properties for Energy applications. Ind. Biotechnol. 2011, 7, 348-401. doi:10.1089/ind.2011.7.384. open in new tab
  45. Sierra, R.; Smith, A.; Granda, C.; Holtzapple, M.T. Producing fuels and chemicals from lignocellulosic biomass. Chem. Eng. Process. 2008, 104, 10-18.
  46. Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction, Sustain. Energy Technol. Assess. 2015, 12, 26-37. doi:10.1016/j.seta.2015.08.003. open in new tab
  47. Kotowski, W.; Konopka, E. Miejsce biomasy drzewnej w procesach pozyskiwania energii ze źródeł odnawialnych. Ekoenergetyka 2006, 7, 532-537. Available online: https://www.cire.pl/pliki/2/elektroenergetyka_nr_06_07_e1.pdf (accessed on 20 April 2020).
  48. Bridgwater, A. Thermal Biomass conversion and utilization Biomass information system. In Directorate- General XII, Science, Research and Development B-1049; European Commission: Brussels, Belgium, 1996. open in new tab
  49. Kizuka, R.; Ishii, K.; Sato, M.; Fujiyama, A. Characteristics of wood pellets mixed with torrefed rice straw as a biomass fuel. Int. J. Energy Environ. Eng. 2019, 10, 357-365. doi:10.1007/s40095-019-0305-0. open in new tab
  50. Medic, D. Investigation of Torrefaction Process Parameters and Characterization of Torrefied Biomass. Master's Dissertation Theses, Iowa State University Capstones, Theses and Dissertations, Iowa State University, Ames, IA, USA, 2012; p. 12403. open in new tab
  51. Kong, L.; Li, G.; Zhang, B.; He, W.; Wang, H. Hydrogen Production from Biomass Wastes by Hydrothermal Gasification, Energy Sources, Part A. Taylor Fr. Online 2008, 30, 1166-1178. doi:10.1080/15567030701258246. open in new tab
  52. Shang, L.; Jesper, A.; Holm, J.K.; Søren, B.; Rui-zhi, Z.; Yong-hao, L.; Helge, E.; Henriksen, U.B. Intrinsic kinetics and devolatilization of wheat straw during torrefaction. J. Anal. Appl. Pyrolysis 2013, 100, 145-152. doi:10.1016/j.jaap.2012.12.010. open in new tab
  53. Koppejan, J.; Sokhansanj, S.; Melin, S.; Madrali, S. Status overview of torrefaction technologies. In IEA Bioenergy Task 32 report; Publisher: Enschede, The Netherlands, December 2012.
  54. Rudolfsson, M.; Larsson, S.H.; Lestander, T.A. New tool for improved control of sub-process interactions in rotating ring die pelletizing of torrefied biomass. Appl. Energy 2017, 190, 835-840. doi:10.1016/j.apenergy.2016.12.107. open in new tab
  55. Strandberg, M. From Torrefaction to Gasification Pilot Scale Studies for Upgrading of Biomass; Umeå universitet: Umeå, Sweden, 2015; p. 58.
  56. Nam, S.B.; Park, Y.S.; Kim, D.J.; Gu, J.H. Torrefaction Reaction Characteristic of various Biomass Waste on Pilot Scale of Torrefaction Reaction System. Procedia Environ. Sci. 2016, 35, 890-894. doi:10.1016/j.proenv.2016.07.044. open in new tab
  57. Strandberg, M.; Olofsson, I.; Linda, P.; Susanne, W.; Katarina, Å.; Anders, N. Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Process. Technol. 2015, 134, 387-398. doi:10.1016/j.fuproc.2015.02.021. open in new tab
  58. Shang, L. Upgrading Fuel Properties of Biomass by Torrefaction. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2012.
  59. Pawlak-Kruczek, H.; Krochmalny, K.; Mościcki, K.; Zgóra, J.; Czerep, M.; Ostrycharczyk, M.; Niedźwiecki, Ł. Torrefaction of Various Types of Biomass in Laboratory Scale, Batch-Wise Isothermal Rotary Reactor and Pilot Scale, Continuous Multi-Stage Tape Reactor. Inżynieria i Ochrona Środowiska (Eng. Prot. Environ.) 2017, 20, 457-472. doi:10.17512/ios.2017.4.3. 59. Biomass Technology Group (BTG). Available online: http://www.btgworld.com/en/rtd/technologies/torrefaction (accessed on 25 January 2020). open in new tab
  60. Amutio, M.; Lopez, G.; Artetxe, M.; Elordi, G.; Olazar, M.; Bilbao, J. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour. Conserv. Recycl. 2012, 59, 23-31. doi:10.1016/j.resconrec.2011.04.002. open in new tab
  61. Fernandez-Akarregi, A.R.; Makibar, J.; Lopez, G.; Amutio, M.; Olazar, M. Vaibhav Dhyani of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Process. Technol. 2013, 112, 48-56. doi:10.1016/j. fuproc.2013.02.022. open in new tab
  62. Amutio, M.; Lopez, G.; Aguado, R.; Artetxe, M.; Bilbao, J.; Olazar, M., Effect of vacuum on lignocellulosic biomass flash pyrolysis in a conical spouted bed reactor. Energy Fuels 2011, 25, 3950-3960. doi:10.1021/ef200712h. open in new tab
  63. Rasul, M.G.; Jahirul, M.I. Recent Developments in Biomass Pyrolysis for Bio-Fuel Production: Its Potential for Commercial Applications. In Recent Researches in Environmental and Geological Sciences, Proceedings of the 7th WSEAS International Conference on Energy & Environment (EE '12), 2012; Kos Island, Greece July 14- 17, 2012, pp. 256-265, ISBN: 978-1-61804-110-4.
  64. Kaasalainen, J.; Kallio-Könnö, M.; Isaksson, J. Large Scale CFB Gasification of Waste and Biomass. In Proceedings of the 12th International Conference on Fluidized Bed Technology, Krakow, Poland, 23-27
  65. Shafizadeh, F. Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis 1982, 3, 283-305. open in new tab
  66. Antal, M.J., Jr.; Croiset, E.; Dai, X.; DeAlmeida, C.; Mok, W.S.; Norberg, N.; Richard, J.; Majthoub, M. High-Yield Biomass Charcoal. Energy Fuels 1996, 10, 652. doi:10.1021/ef9501859. open in new tab
  67. Klass, D.L. Biomass for Renewable Energy. In Fuels, and Chemicals; Elsevier: Amsterdam, The Netherlands, 1998; p. 651, ISBN-13: 978-0124109506. doi:10.1016/B978-0-12-410950-6.X5000-4. open in new tab
  68. Kim, D. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A mini review. Molecules 2018, 23, 309. doi:10.3390/molecules23020309. 69. FAO. Simple technologies for charcoal making. FAO Forestry Paper 41, 1987. Available online: http://www.fao.org/docrep/x5328e/x5328e00.htm#Contents (accessed on 20 November 2010). open in new tab
  69. Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Perez, M.G. Historical Developments of Pyrolysis Reactors: A Review. Energy Fuels 2017, 31, 5751-5775. doi:10.1021/acs.energyfuels.7b00641. open in new tab
  70. Kļaviņa, K.; Blumberga, D. A comparison of different charcoal production technology outputs. Environ. Technol. Res. 2015, 2, 137-140. doi:10.17770/etr2015vol2.263. open in new tab
  71. Ryms, M.; Januszewicz, K.; Kazimierski, P.; Łuczak, J.; Klugmann-Radziemska, E.; Lewandowski, W.M. Post-Pyrolytic Carbon as a Phase Change Materials (PCMs) Carrier for Application in Building Materials. Materials 2020, 13, 1268. doi:10.3390/ma13061268. open in new tab
  72. Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, Practical Design and Theory; Elsevier: Amsterdam, The Netherlands, 2018; doi:10.1016/C2016-0-04056-1. open in new tab
  73. ACM Simulation Program for Designing Complex Processes. Available online: www.aspentech.com (accessed on 20 April 2020). open in new tab
  74. Calvo, L.F.; García, A.I.; Otero, M. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor. Sci. World J. 2013, 2013, 479403. doi:10.1155/2013/479403. open in new tab
  75. Gómez, C.; Manya, J.J.; Velo, E.; Puigjaner, L. Further Application of a Revisited Summative Model for Kinetics of Biomass Pyrolysis. Ind. Eng. Chem. Res. 2004, 43, 901. doi:10.1021/ie030621b. open in new tab
  76. Gómez, C.; Varhegyi, G.; Luis, P. Slow Pyrolysis of Woody Residues and an Herbaceous Biomass Crop: A Kinetic Study. Ind. Eng. Chem. Res. 2005, 44, 6650. doi:10.1021/ie050474c. open in new tab
  77. Mitta, N.R.; Gómez Díaz, C.J.; Velo, E.; Puigjaner, L. Modeling and Simulation of Biomass Pyrolysis as a First Step in a Gasification-Based System. Department of Chemical Engineering, Universitat Politècnica de Catalunya (UPC), 655d, 2009. Available online: http://aiche.confex.com/aiche/2006/techprogram/P58269.HTM (accessed on 20 April 2020).
  78. Antal, M.J. Jr.; Varhegyi, G. Cellulose Pyrolysis Kinetics: The Current State of Knowledge. Ind. Eng. Chem. Res. 1995, 34, 703. doi:10.1021/ie00042a001. open in new tab
  79. Blasi, C.D. Comparison of semi-global mechanisms for primary pyrolysis of lgnocellulosic fuels. J. Anal. Appl. Pyrolysis 1998, 47, 43-64.
  80. Broido, A.; Weinstein, M. Low-Temperature Isothermal Pyrolysis of Cellulose. Proceedings of the 3rd International Conference on Thermal Analysis; open in new tab
  81. Wiedemann, Ed.; Birkhauser Verlag: Basel, Switzerland, 1971; p. 285.
  82. Agrawal, R.K. Kinetics of reactions involved in pvrolvsis of cellulose II. The modified kilzer-bioid model. Can. J. Chem. Eng. 1988, 66, 413-418. doi:10.1002/cjce.5450660310. open in new tab
  83. Shafizadeh, F.; Chin, P.P.S. Thermal Deterioration of Wood. ACS Symp. Ser. 1977, 43, 57-81. doi:10.1021/bk-1977-0043.ch005. open in new tab
  84. Bradbury, A.G.W.; Sakai, Y.; Shafizadeh, F. A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 1979, 23, 3271. doi:10.1002/app.1979.070231112. open in new tab
  85. Shafizadeh, F. The chemistry of solid wood. In Advances in Chemistry; open in new tab
  86. Rowell, R., Ed.; Series 207; open in new tab
  87. Varhegyi, G.; Jakab, E.; Antal, M.J. Is the Broido-Shafizadeh Model for Cellulose Pyrolysis True? Energy Fuels 1994, 8, 1345-1352. doi:10.1021/ef00048a025. open in new tab
  88. Koufopanos, C.A.; Maschio, G.; Lucchesi, A. Kinetic modeling of the pyrolysis of biomasscomponents. Can. J. Chem. Eng. 1989, 67, 75-84. doi:10.1002/cjce.5450670111. open in new tab
  89. Chan, W.R.; Kelbon, M.; Krieger, B.B. Modelling and Experimental Verification of Physical and Chemical Processes during Pyrolysis of a Large Biomass Particle. Fuel 1985, 64, 1505. doi:10.1016/0016- 2361(85)90364-3. open in new tab
  90. Thurner, F.; Mann, U. Kinetic investigation of wood pyrolysis. Ind. Eng. Chem. Process. Des. Dev. 1981, 20, 482-488. doi:10.1021/i200014a015. open in new tab
  91. Font, R.; Marcilla, A.; Verdu, E.; Devesa, J. Kinetics of the Pyrolysis of Almond Shells and Almond Shells Impregnated with CoCl2 in a Fluidized Bed Reactor and in a Pyroprobe100. Ind. Eng. Chem. Res. 1990, 29, 1846-1855. open in new tab
  92. Porada, S. The reactions of formation of selected gas products during coal pyrolysis. Fuel 2004, 83, 1191- 1196. doi:10.1016/j.fuel.2003.11.007. open in new tab
  93. Porada, S. A comparison of basket willow and coal hydrogasification and pyrolysis. Fuel Process. Technol. 2009, 90, 717-721. doi:10.1016/j.fuproc.2009.01.015. open in new tab
  94. Fisher, T.; Hajaligol, M.; Waymack, B.; Kellogg, D. Pyrolysis behavior and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis 2002, 62, 331-349. doi:10.1016/S0165-2370(01)00129-2. open in new tab
  95. Morf, P.; Hasler, P.; Nussbaumer, T. Mechanisms and kinetic of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel 2002, 81, 843-853. open in new tab
  96. Pilawski, M.; Grzybek, A.; Rogulska, M. Energetyczny recykling odpadów organicznych. Ekol. Tech. 2000, 8, 48-53.
  97. Han, J.; Kim, H. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renew. Sustain. Energy Rev.2008, 12, 397-416. doi:10.1016/j.rser.2006.07.015. open in new tab
  98. Kowalik, P. Development of bioenergy sector in European Union. In Proceedings of the Oil &Fuels for Sustainable Development AUZO, Gdańsk, Poland, 8-11 September 2008.
  99. Popczyk, J. Development of bioenergy sector in the light of European energy and climate policies. In Proceedings of the Oil &Fuels for Sustainable Development AUZO, Gdańsk, Poland, 8-11 September 2008.
  100. Bałtycki Klaster Ekoenergetyczny. IMP PAN Gdańsk. Available online: http://www.bkee.pl (accessed on 20 April 2020).
  101. Kobyłecki, R.; Bis, Z.; Nowak, W. Paliwo z biomasy i paliw alternatywnych-Konwersja energii. Czysta Energ. 2005, 3, 23-25.
  102. Lewandowski, W.M.; Januszewicz, K.; Kosakowski, W. Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type-A review. J. Anal. Appl. Pyrolysis 2019, 140, 25-53. doi:10.1016/j.jaap.2019.03.018. open in new tab
  103. Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew. Sustain. Energy Rev. 2011, 15, 4171-4186. open in new tab
  104. Bridgwater, A.V. A guide to fast pyrolysis of biomass for fuels and chemicals. In PyNe Guide 1; Bio- Energy Research Group, Aston University, U.K., 1999. Available online: http://courses.washington.edu/pse104/images/newslet6.pdf (accessed on 20 April 2020). open in new tab
  105. Ryms, M.; Januszewicz, K.; Lewandowski, W.M.; Klugmann-Radziemska, E. Pyrolysis proces of whole tires as a biomass energy recycling. Ecol. Chem. Eng. S 2013, 20, 93-107. doi:10.2478/eces-2013-0007. open in new tab
  106. Amutio, M.; Lopez, G.; Aguado, R.; Bilbao, J.; Olazar, M. Biomass oxidative flash pyrolysis: Autothermal operation, yields and product properties. Energy Fuels 2012, 26, 1353-1362. doi:10.1021/ef201662x. open in new tab
  107. Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 2010, 34, 67-74. doi:10.1016/j.biombioe.2009.09.012. open in new tab
  108. Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 2000, 4, 1-73. doi:https://doi.org/10.1016/S1364-0321(99)00007-6. open in new tab
  109. Isahak, W.N.R.W.; Hisham, M.W.M.; AmbarYarmo, M.; Hin, T.Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16, 5910-5923. doi:10.1016/j.rser.2012.05.039. open in new tab
  110. Briens, C.; Piskorz, J.; Berruti, F. Biomass valorization for fuel and chemicals production -a review. Int. J. Chem. React. Eng. 2008, 6, 1-49. doi:10. 2202/1542-6580.1674. open in new tab
  111. Craig, H.; Briens, C.; Berruti, F.; Chan, E. A Review of Short Residence Time Cracking Processes. IJCRE 2005, 3, R1. doi:10.2202/1542-6580.1139. open in new tab
  112. Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68-94. doi:10.1016/j.biombioe.2011. 01.048. open in new tab
  113. Prins, W.; Wagenaar, B.M. Rewiew of rotating cone technology for flash pyrolysis of biomass. In Biomass Gasif Pyrolysis; Kaltschmitt, M.K., Bridgwater, A.V., Eds.; CPL Press: Stuttgart; Germany, 1997; pp. 316- 326.
  114. Diebod, J.; Scahill, J. Ablative Fast Pyrolysis of Biomass in the Entrained-Flow Cyclonic Reactor at SERI. In Proceedings of the 14-th Biomass Thermochemical Conversion Contractor's Review Meeting Arlington, Arlington, VA, USA, 22-25 June 1982. open in new tab
  115. Peacocke, G.V.C.; Bridgwater, A.V. Design of a novel ablative pyrolysis reactor. Adv. Thermochem. Biomass Convers. 1993, 1134-1150. doi:10. 1007/978-94-011-1336-6_88. open in new tab
  116. Bramer, E.A.; Brem, G. A Novel Technology for Fast Pyrolysis of Biomass: PyRos reactor. In Proceedings of the 5th Biomass Conference of the Americas, Orlando, FA, USA, 17-21 September 2001.
  117. Vaibhav Dhyani, Thallada Bhaskar, Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, A volume in Biomass, Biofuels, Biochemicals, (2-nd edytion, Biomass, Biofules, Biochemicals, 2019, 217-244, https://doi.org/10.1016/B978-0-12-816856-1.00009-9 open in new tab
  118. BTG Biomass Technology Group. Available online: www.btgworld.com (accessed on 20 April 2020). open in new tab
  119. Eliasson, B.; Riemer, P.; Wokaun, A. Greenhouse Gas Control Technologies; Elsevier Science Book: Amsterdam, The Netherlands, 1999.
  120. Roy, C.; Morin, D.; Dubé, F. The biomass Pyrocycling TM process. In Biomass Gasification & Pyrolysis: State of the Art and Future Prospects;
  121. Kaltschmitt, M., Bridgwater, A.V., Eds.; CPL Press: London, UK, 1997; pp. 307-315. open in new tab
  122. Roy, C.; Blanchette, D.; de Caumia, B.; Dubé, F.; Pinault, J.; Belanger, E.; Laprise, P. Industrial Scale Demonstration of the Pyrocycling™ Process for the Conversion of Biomass to Biofuels and Chemicals. 1st World Conference on Biomass for Energy and Industry. In Proceedings of the Conference held in Sevilla, Spain, 5-9 June 2000;
  123. Kyritsis, S., Beenackers, A.A.C.M., Helm, P., Grassi, A., Chiaramonti, D., Eds.; James & James (Science Publishers) Ltd.: London, UK, 2001; Volume II, pp. 1032-1035. open in new tab
  124. ENTECH Renewable Energy Technologies PTY Ltd.: Australia. Available online: http://www.entech- res.com (accessed on 20 April 2020). open in new tab
  125. Reddy, P.J. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies; CRC Press Book: Boca Raton, FL, USA, 2016. doi:10.1201/b21307. open in new tab
  126. RATech. Available online: http://www.ratech.com.pl (accessed on 20 April 2020). open in new tab
  127. UC Prozesstechnik GmbH, Dillingen, Germany. Available online: www.ucgmbh.de (accessed on 20 April 2020). open in new tab
  128. Westerhout, R.W.J.; Waanders, J.; Kuipers, J.A.M.; van Swaaij, W.P.M. Development of a Continuous Rotating Cone Reactor Pilot Plant for the Pyrolysis of Polyethene and Polypropene. Ind. Eng. Chem. Res. 1998, 37, 2316-2322. doi:10.1021/ie970703y. open in new tab
  129. Wagenaar, B.M.; Venderbosch, R.H.; Carrasco, J.; Strenziok, R.; d van der Aa, B.J. Rotating cone bio-oil production and applications. In Progress in Thermochemical Biomasss Conversion; Bridgwater, A.V., Ed.; Blackwell Science: London, UK, 2001; pp. 1268-1280. open in new tab
  130. Roy, C.; Chaala, A.; Darmstadt, H. The vacuum pyrolysis of used tires. End-uses for oil and carbon black products. J. Anal. Appl. Pyrolysis 1999, 51, 201-221. doi:10.1016/S0165-2370(99)00017-0. open in new tab
  131. Roy, C.; Blanchette, D.; Caumia, B. Horizontal Moving Bed Reactor. Patant WO 1998034996A1, 13 August 1998; pp. 47-40.
  132. Rabe, R.C. A Model for the Vacuum Pyrolysis of Biomass. Master's Thesis, supervisor: Prof. J. H. Knoetze, Dep. of Process Engineering, The Univ. of Stellenbosh, Stellenbosch, South Africa, December 2005. Available online: https://scholar.sun.ac.za/bitstream/handle/10019.1/1675/rabe_model_2005.pdf (accessed on 20 April 2020).
  133. Ragailler, T. Piec obrotowy. Urząd Patentowy RP, Patent No 192415 PL., 24 August 2000.
  134. HD-PAWA-THERM® Process for the decentralized recycling of municipal sewage sludge by generating a high-calorific pyrolysis gas. Available online: http://www.ucgmbh.de/download/hdpawatherm.pdf (accessed on 20 April 2020). open in new tab
  135. Nikitin, N.I. The Chemistry of Cellulose and Wood; (translated in 1966 from Russian by J. Schmorak, Israel Program for Scientific Translations, Jerusalem, Israel); Academy of Sciences of the USSR, Institute of High Molecular Compounds: Moscow-Leningrad, Russia, 1962.
  136. Reed, T.B.; Das, A. Handbook of Biomass Downdraft Gasifier Engine Systems. In Solar Energy Research Institute under the U.S., Department of Energy Solar Technical Information Program; The Biomass Foundation Press: Colorado, USA, 1988. open in new tab
  137. Bain, R.L. Biomass Gasification Overview. In Proceedings of the Presentation in National Renewable Energy Laboratory, Colorado, USA, 28 January 2004. open in new tab
  138. Geurds, M. Biomass gasification technologies status and applications. In Proceedings of the CTIT conference, Hanoi, Vietnam, 18-20 September 2006. open in new tab
  139. Bukar, A.A.; Oumarou, M.B.; Tela, B.M.; Eljummah, A.M. Assessment of Biomass Gasification: A Review of Basic Design Considerations. Am. J. Energy Res. 2019, 7, 1-14. doi:10.12691/ajer-7-1-1. open in new tab
  140. Stassen, H.E. Small-Scale Biomass Gasifiers for Heat and Power: A Global Review, World Bank Technical Papers; Energy Series: Washington, DC, USA, 1995; pp. 1-88. open in new tab
  141. Beheshti, S.M.; Ghassemi, H.; Shahsavan-Markadeh, R. Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Convers. Manag. 2015, 94, 345-352. doi:10.1016/j.enconman.2015.01.060. open in new tab
  142. Van Den Aarsen, F.G.; Susanto, H.; Beenackers, A.A.C.M.; Van Swaaij, W.P.M. Energy recovery by gasification of agricultural and forestry wastes in fluidized bed reactors and in moving bed reactors with internal recycle of pyrolysis gas, EUR 10012 EN. In Process Development and Reaktor Modeling; Commission of the European Communities. Energy: Luxembourg, 1986; pp. 1-326. open in new tab
  143. Bedi, E. W kierunku odnawialnych źródeł energii. In Nowe wiadomości dla Europy Środkowo-Wschodniej;
  144. Wyd., Z.G., Ed.; Polskiego Klubu Ekologicznego: Kraków, Poland, 1996; p. 12.
  145. Fish, J.D.; Hawn, D.C. Closed loop thermochemical energy transport based on CO2 reforming of methane: Balancing the reaction system. J. Sol. Energy Eng.1987, 109, 215-220. doi:10.1115/1.3268209. open in new tab
  146. Johansson, I.B.; Kelly, H.; Reddy, A.K.N.; Williams, R.H. (Eds) Renewable Energy-Sources for Fuels and Electricity; Island Press: Washington, DC, USA, 1993.
  147. Stelmach, S.; Wasielewski, R.; Figa, J. Zgazowanie biomasy-Przykłady nowych technologii. Arch. Gospod. Odpad. Ochr. Śr. 2008, 7, 9-29. ISSN 1733-4381, Available online: http://ago.helion.pl (accessed on 20 April 2020).
  148. Higman, C.; van der Burgt, M.J. Gasification; Elsevier: Amsterdam, The Netherlands; GPP: Burlington, MA, USA, 2003. open in new tab
  149. Paisley, M.A.; Overend, R.P. The SilvaGas ® Process from Future Energy Reosurces-A Commercialization Success. In Proceedings of the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry, and Climate Protection, Amsterdan, TheNetherlands, 17-22 June 2002. open in new tab
  150. Rauch, R.; Hrbek, J.; Hofbauer, H. Biomass gasification for synthesis gas production and applications of the syngas, Advanced Review. WIREs Energy Environ. 2013, 3, 343-362. doi:10.1002/wene.97. open in new tab
  151. Radtke, K. ThyssenKrupp Uhde's fluidised bed and entrained flow gasification technologies for biomass and coal. In Proceedings of the Presentation at SGC International Seminar on Gasification 2012, Stockholm, Sweden, 18-19 October 2012.
  152. Aysu, T.; Küçük, M.M. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy 2014, 64, 1002-1025. doi:10.1016/j.energy.2013.11.053. open in new tab
  153. Roeck, D.R. Technology Overview: Circulating Fluidized-Bed Combustion. Final Report; EPA-600/7-82-051; US Environmental Protection Agency: Bedford, MA, USA, June 1982; pp. 1-55.
  154. Greil, C.; Hirschfelder, H. Biomass Integrated CFB Gasification Combined Cycle Plants. In Proceedings of the Paper presented at IChemE Conference, "Gasification: Gateway to a Cleaner Future," Dresden, Germany, 23-24 September 1998.
  155. Greil, C.; Hirschfelder, J.; Turna, O.; Obermeier, T. Operating Results from Gasification of Waste Material and Biomass in Fixed Bed and Circulating Fluidized Bed Gasifiers. In Proceedings of the Paper presented at IChemE Conference, "Gasification: The Clean Choice for Carbon Management," Noordwijk, The Netherlands, 8-10 April 2002.
  156. Mahishi, M. Theoretical and Experimental Investigation of Hydrogen Production by Gasification of Biomass. Ph.D. Thesis, University of Florida, Gainesville, FA, USA, 2006.
  157. Rezaiyan, J.; Cheremisinoff, N.P. Gasification Technologies A Primer for Engineers and Scientists; open in new tab
  158. Taylor & Francis Group, LLC, CRC: Boca Raton, FL, USA, 2005.
  159. Rollinson, A.N.; Williams, O. Experiments on torrefied wood pellet: Study by gasification and characterization for waste biomass to energy applications. R. Soc. Opensci. 2016, 3, 150578. doi:10.1098/rsos.150578. open in new tab
  160. Maurstad, O. An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. MIT LFEE 2005-002 WP. Available online: https://sequestration.mit.edu/pdf/LFEE_2005- 002_WP.pdf (accessed on 20 April 2020).
  161. Holt, N. EPRI, "Gasification process selection-Tradeoffs and ironies". In Proceedings of the Gasification Technologies Conference, Washington, DC, USA, 3-6 October 2004. open in new tab
  162. Licznerski, E.; Ryms, M. EC in Gueesing (Austria). Optima Invest, S.A. Gdańsk, Poland, 2007. Available online: http://live.pege.org/2005-wood/powerplant.htm (accessed on 20 April 2020).
  163. European BIO CHP. Available online: https://bioenergyeurope.org/ (accessed on 20 April 2020). open in new tab
  164. Mäkelä, M.; Verónica, B.; Andrés, F. Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties. Appl. Energy 2015, 155, 576-584. doi:10.1016/j.apenergy.2015.06.022. open in new tab
  165. Lucian, M.; Maurizio, V.; Lihui, G.; Giovanni, P.; Goldfarb, J.L.; Luca, F. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste, Fuel 2018, 233, 257-268. doi:10.1016/j.fuel.2018.06.060. open in new tab
  166. Herguido, J.; Corella, J.; Gonzalez-Saiz, J. Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale: Effect of the type of feedstock. Ind. Eng. Chem. Res. 1992, 31, 1274-1282. doi:10.1021/ie00005a006. open in new tab
  167. Amin, S.; Reid, R.C.; Modell, M. Reforming and decomposition of glucose in an aqueous phase. In Proceedings of the Intersociety Conference on Environmental System, San Francisco, CA, USA, 21-24 July 1975; 75-ENAs-21. open in new tab
  168. Tester, J.W.; Holgate, H.R.; Armellini, F.J.; Webley, P.A.; Killilea, W.R.; Hong, G.T.; Barner, H.E. Supercritical oxidation technology process development and fundamental research. In Emerging Technologies for Hazardous Waste Management III; w Teddler, W.D., Pohland, F.G., Eds.; American Chemical Society Symposium Series; American Chemical Society: Washington, DC, USA,1993; Volume 518, pp. 35-76. open in new tab
  169. Yoshida, Y.; Kiyoshi, D.; Yukihiko, M.; Ryuji, M.; Dayin, L.; Hisashi, I.; Hiroshi, K. Comprehensive comparison of efficiency and CO2 emission between biomass energy conversion technologies-Position of supercritical water gasification biomass technologies. Biomass Bioenergy 2003, 25, 257-272. doi:10.1016/S0961-9534(03)00016-3. open in new tab
  170. Pińkowska, H. Water in sub-and supercritical state as a new reaction medium [in Polish]. open in new tab
  171. WIEDZAinfo.pl. Available online: http://wiedzainfo.ue.wroc.pl/wyklady/686/woda_w_stanie_pod_i_nadkrytycznym_jako_nowe_medium_ reakcyjne.html (accessed on 20 April 2020).
  172. Schmitt, C.C.; Renata, M.; Neves, R.C.; Daniel, R.; Axel, F.; Klaus, R.; Jan-Dierk, G.; Nicolaus, D. From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Process. Technol. 2020, 197, 106199. doi:10.1016/j.fuproc.2019.106199. open in new tab
  173. Biswas, B.; Kumar, J.; Bhaskar, T. Advanced Hydrothermal Liquefaction of Biomass for Bio-Oil Production. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition). Biomass Biofuels Biochem. 2019, 245-266. doi:10.1016/B978-0-12- 816856-1.00010-5. open in new tab
  174. Kirtania, K. Thermochemical Conversion Processes for Waste Biorefinery in Waste Biorefinery. In Waste Biorefinery: Potential and Perspectives; open in new tab
  175. Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.J., Khanal, S.K., Eds.; Elsevier: Amsterdam, Netherland, 2018; pp. 129-156. doi:10.1016/B978-0-444-63992-9.00004-5. open in new tab
  176. Smith, AM.; Whittaker, C.; Shield, I.; Ross AB. The potential for production of high quality bio-coal from early harvested Miscanthus by hydrothermal carbonization. Fuel 2018, 220, 546-557. doi:10.1016/j.fuel.2018.01.143. open in new tab
  177. Ahmed, II.; Nipattummakul, N.; Gupta, AK. Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl. Energy 2011, 88, 165-174. doi:10.1016/j.apenergy.2010.07.007. open in new tab
  178. Nizamuddina, S.; Balochb, H.A.; Griffina, G.J.; Mubarakc, N.M.; Bhuttob, A.W.; Abrod, R.; Mazarib, S.A.; Si Alie, B. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289-1299. doi:10.1016/j.rser.2016.12.122. open in new tab
  179. Volpe, M.; Fiori, L.; Volpe, R.; Messineo, A. Upgrading of olive tree trimmings residue as biofuel by hydrothermal carbonization and torrefaction: A comparative study. Chem. Eng. Trans. 2016, 50, 13-18. doi:10.3303/CET1650003. open in new tab
  180. Volpe, M.; Wüst, D.; Merzari, F.; Lucian, M.; Andreottola, G.; Kruse, A.; Fiori, L. One stage olive mill waste streams valorisation via hydrothermal carbonization. Waste Manag. 2018, 80, 224-234. doi:10.1016/j.wasman.2018.09.021. open in new tab
  181. Chen, X.; Qimei, L.; Ruidong, H.; Xiaorong, Z.; Guitong, L. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236-243. doi:10.1016/j.biortech.2017.04.012. open in new tab
  182. Pecchi, M.; Patuzzi, F.; Benedetti, V.; Di Maggio, R.; Baratieri, M. Thermodynamics of hydrothermal carbonization: Assessment of the heat release profile and process enthalpy change. Fuel Process. Technol. 2020, 197, 106206. doi:10.1016/j.fuproc.2019.106206. open in new tab
  183. Lynam, J.G.; Coronella, C.J.; Yan, W.; Reza, M.T.; Vasquez, V.R. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresour. Technol. 2011, 102, 6192-6199. doi:10.1016/j.biortech.2011.02.035. open in new tab
  184. Mašek, O. Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct. Handbook of Biofuels Production (Second Edition). Process. Technol. 2016, 655-671. doi:10.1016/B978-0-08- 100455-5.00021-7. open in new tab
  185. Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625-2643. doi:10.1016/j.wasman.2009.06.004. open in new tab
  186. Anderson, J.; Furusjo, E.; Wetterlund, E.; Lundgren, J.; Landalv, I. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities. Energy Convers. Manag. 2016, 110, 240-248. doi:10.1016/j.enconman.2015.12.027. open in new tab
  187. Andersson, J.; Lundgren, J. Techno-economic analysis of ammonia production via integrated biomass gasification. Appl. Energy 2014, 130, 484-490. doi:10.1016/j.apenergy.2014.02.029. open in new tab
  188. Malhotra, A. Thermodynamic Properties of Supercritical Steam. Supercritical Steam Tables. Copyright  2009 by Ashok Malhotra, Published by SteamCenter.com. ISBN 9781411684911. Available online: http://www.lulu.com/shop/ashok-malhotra/thermodynamic-properties-of-supercritical- steam/paperback/product-304448.html (accessed on 20 April 2020) open in new tab
  189. Kruse, A. Hydrothermal biomass gasification. J. Supercrit. Fluids 2009, 47, 391-399. doi:10.1016/j.supflu.2008.10.009. open in new tab
  190. Boukis, N.; Galla, U.; Műller, H.; Dinjus, E. Biomass gasification in supercritical water experimental progress achieved with the VERENA pilot plant. In Proceedings of the 15th European Biomass Conference & Exhibition, Berlin, Germany, 7-11 May 2007. open in new tab
  191. Mozaffarian, M.; Deurwaarder, E.P.; Kersten, S.R.A. Green gas (SNG) Production by Supercritical Gasification of Biomass; The Novem project number is: 268-03-04-02-006; Dutch Ministry of Economic Affairs: Petten, The Netherlands, November 2004. open in new tab
  192. Matsumura, Y.; Minowa, T.; Potic, B.; Minowa, T.; Kersten, S.R.A.; Prins, W.; de Beld, B.; Elliott, D.C.; Neuenschwander, G.G.; Andrea, K. Biomass gasification in near-and super-critical water: Status and prospects. Biomass Bioenergy 2005, 29, 269-292. doi:10.1016/j.biombioe.2005.04.006. open in new tab
  193. Hydrogen-rich fuel gas from supercritical water gasification of wine grape residues and greenhouse rest biomass, Programme: FP5-Energy, Environment, Sustainable Development, Including: Bauer Kompost (D),-Wiesloch Winzerkeller (D),-Feluwa Pumpen (D),-Callaghan Engineering (IRL),-Sparqle International (NL),-Composteringsbedrijf Zuid-Holland (NL),-Forschungszentrum Karlsruhe (D),- Biomass Technology Group (NL),-Promikron (NL), European Commission, Research & Innovation, 2011. Available online: https://cordis.europa.eu/project/id/ENK5-CT-2001-30010 (accessed on 20 April 2020). open in new tab
  194. Gupta, A.K. Emissions Reduction and Efficiency Improvements in Power Generation and Industrial Processes; WREC 09: Bangkok, Thailand, 19-21 May 2009.
  195. Balu, E.; Lee, U.; Chung, J.N. High temperature steam gasification of woody biomass-A combined experimental and mathematical modeling approach. Int. J. Hydrogen Energy 2015, 40, 14104-14115. doi:10.1016/j.ijhydene.2015.08.085. open in new tab
  196. Yoshikawa, K. Production of Useful Fuels and Electricity from Biomass and Waste Resource. In Proceedings of the VII International Conference "FUEL FROM WASTE 2009", Szczyrk, Poland, 21-23 October 2009.
Verified by:
Gdańsk University of Technology

seen 241 times

Recommended for you

Meta Tags