Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide - Publication - Bridge of Knowledge

Search

Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide

Abstract

Densities, refractive indices and viscosities at 293.15, 298.15, 303.15, 308.15 and 313.15 K of binary mixtures of toluene with 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide have been measured over the miscible region at p = 0.1 MPa. From the experimental data, values of excess molar volume, excess thermal expansion, deviation in refractive index, deviation in viscosity and excess Gibbs energy of activation for viscous flow have been calculated. These properties have been fitted to the Redlich-Kister-type polynomial equation in order to analyse non-ideal behaviour of the studied mixtures. Moreover, partial and apparent molar volumes of toluene and ionic liquid in their binary systems have been calculated. Finally, the effects of temperature and cation of ionic liquid on the physicochemical properties were analysed and discussed in terms of intermolecular interactions occurring in the studied systems.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 82 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF MOLECULAR LIQUIDS no. 304, pages 1 - 13,
ISSN: 0167-7322
Language:
English
Publication year:
2020
Bibliographic description:
Warmińska D., Cichowska-Kopczyńska I.: Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide// JOURNAL OF MOLECULAR LIQUIDS -Vol. 304, (2020), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.molliq.2020.112754
Bibliography: test
  1. S. Corderí, N. Calvar, E. Gómez, A. Domínguez, Capacity of ionic liquids [EMim][NTf 2] and [EMpy][NTf 2] for extraction of toluene from mixtures with alkanes: compar- ative study of the effect of the cation, Fluid Phase Equilib. 315 (2012) 46-52, https:// doi.org/10.1016/j.fluid.2011.11.016. open in new tab
  2. T.A. Al-Sahhaf, E. Kapetanovic, Measurement and prediction of phase equilibria in the extraction of aromatics from naphtha reformate by tetraethylene glycol, Fluid Phase Equilib. 118 (1996) 271-285, https://doi.org/10.1016/0378-3812(95)02849- 8. open in new tab
  3. J. Chen, L.-P. Duan, J.-G. Mi, W.-Y. Fei, Z.-C. Li, Liquid-liquid equilibria of multi- component systems including n-hexane, n-octane, benzene, toluene, xylene and sulfolane at 298.15 K and atmospheric pressure, Fluid Phase Equilib. 173 (2000) 109-119, https://doi.org/10.1016/S0378-3812(00)00398-8. open in new tab
  4. U. Domańska, M. Wlazło, Z. Dąbrowski, A. Wiśniewska, Ammonium ionic liquids in separation of water/butan-1-ol using liquid-liquid equilibrium diagrams in ternary systems, Fluid Phase Equilib. 485 (2019) 23-31, https://doi.org/10.1016/J.FLUID. 2018.12.009. open in new tab
  5. M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484-499, https://doi.org/10.1016/j.jhazmat. 2016.09.040. open in new tab
  6. E.J. González, N. Calvar, B. González, Á. Domínguez, Separation of toluene from al- kanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T = 298.15 K and atmospheric pressure, J. Chem. Thermodyn. 42 (2010) 752-757, https://doi. org/10.1016/J.JCT.2010.01.008. open in new tab
  7. N. Delgado-Mellado, A. Ovejero-Perez, P. Navarro, M. Larriba, M. Ayuso, J. García, F. Rodríguez, Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cy- clohexene separation by liquid-liquid extraction, J. Chem. Thermodyn. 131 (2019) 340-346, https://doi.org/10.1016/J.JCT.2018.11.018. open in new tab
  8. I. Cichowska-Kopczynska, M. Joskowska, R. Aranowski, Wetting processes in sup- ported ionic liquid membranes technology, Physicochem. Probl. Miner. Process. 50 (2014) https://doi.org/10.5277/ppmp140131. open in new tab
  9. I. Cichowska-Kopczyńska, M. Joskowska, B. Debski, R. Aranowski, J. Hupka, Separa- tion of toluene from gas phase using supported imidazolium ionic liquid membrane, J. Membr. Sci. 566 (2018) 367-373, https://doi.org/10.1016/J.MEMSCI.2018.08.058. open in new tab
  10. Q. Gan, D. Rooney, Y. Zou, Supported ionic liquid membranes in nanopore structure for gas separation and transport studies, Desalination 199 (2006) 535-537. open in new tab
  11. S. Corderí, E. Gómez, Á. Domínguez, N. Calvar, (Liquid + liquid) equilibrium of ter- nary and quaternary systems containing heptane, cyclohexane, toluene and the ionic liquid [EMim][N(CN)2]. Experimental data and correlation, J. Chem. Thermodyn. 94 (2016) 16-23, https://doi.org/10.1016/J.JCT.2015.10.018. open in new tab
  12. S. Corderí, N. Calvar, E. Gómez, Á. Domínguez, Quaternary (liquid + liquid) equilib- rium data for the extraction of toluene from alkanes using the ionic liquid [EMim] open in new tab
  13. , J. Chem. Thermodyn. 76 (2014) 79-86, https://doi.org/10.1016/J.JCT.2014. 03.008. open in new tab
  14. S. García, M. Larriba, J. García, J.S. Torrecilla, F. Rodríguez, Alkylsulfate-based ionic liquids in the liquid-liquid extraction of aromatic hydrocarbons, J. Chem. Thermodyn. 45 (2012) 68-74, https://doi.org/10.1016/J.JCT.2011.09.009. open in new tab
  15. M. Larriba, P. Navarro, J. García, F. Rodríguez, Liquid-liquid extraction of toluene from n-heptane by {[emim][TCM] + [emim][DCA]} binary ionic liquid mixtures, Fluid Phase Equilib. 364 (2014) 48-54, https://doi.org/10.1016/J.FLUID.2013.12.008. open in new tab
  16. S. García, M. Larriba, J. García, J.S. Torrecilla, F. Rodríguez, Liquid-liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluorobo- rate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids, Chem. Eng. J. 180 (2012) 210-215, https://doi.org/10.1016/J.CEJ.2011.11.069. open in new tab
  17. M. Larriba, P. Navarro, J. García, F. Rodríguez, Separation of toluene from n-heptane, 2,3-dimethylpentane, and cyclohexane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids as extraction solvents, Sep. Purif. Technol. 120 (2013) 392-401, https://doi.org/10.1016/J.SEPPUR.2013.10.017. open in new tab
  18. S. Corderí, N. Calvar, E. Gómez, Á. Domínguez, Quaternary (liquid + liquid) equilib- rium data for the extraction of toluene from alkanes using the ionic liquid [EMim] [MSO4], J. Chem. Thermodyn. 76 (2014) 79-86, https://doi.org/10.1016/J.JCT.2014. 03.008. open in new tab
  19. M. Enayati, B. Mokhtarani, A. Sharifi, S. Anvari, M. Mirzaei, Liquid-liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy] [NO3]) at 298.15 K and atmospheric pressure, J. Chem. Thermodyn. 102 (2016) 316-321, https://doi.org/10.1016/J.JCT.2016.07.030. open in new tab
  20. M. Geppert-Rybczyńska, J.K. Lehmann, A. Heintz, Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sul- fonyl]imide with methanol or acetonitrile, J. Chem. Thermodyn. 71 (2014) 171-181, https://doi.org/10.1016/J.JCT.2013.12.009. open in new tab
  21. M. Vranes, S. Dozic, V. Djeric, S. Gadzuric, Physicochemical characterization of 1- butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 57 (2012) 1072-1077, https:// doi.org/10.1021/je2010837. open in new tab
  22. P.F. Requejo, I. Díaz, E.J. González, Á. Domínguez, Mutual solubility of aromatic hy- drocarbons in pyrrolidinium and ammonium-based ionic liquids and its modeling using the cubic-plus-association (CPA) equation of state, J. Chem. Eng. Data 62 (2017) 633-642, https://doi.org/10.1021/acs.jced.6b00655. open in new tab
  23. J. Vuksanović, D. Soldatović, I. Radović, Z. Višak, M. Kijevčanin, Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m-and p-xylenes, J. Chem. Thermodyn. 131 (2019) 393-403, https://doi. org/10.1016/J.JCT.2018.11.020. open in new tab
  24. D. Keshapolla, S.P. Ijardar, R.L. Gardas, Temperature dependent apparent molar properties of trihexylammonium carboxylate based protic ionic liquids in toluene and dodecane, J. Mol. Liq. 272 (2018) 1058-1069, https://doi.org/10.1016/J. MOLLIQ.2018.10.114. open in new tab
  25. A. Kumari, V. Aniya, N.V. Rane, P.K. Thella, B. Satyavathi, Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of Prigogine-Flory-Patterson theory, Thermochim. Acta 649 (2017) 41-53, https://doi.org/10.1016/J.TCA.2016.12.010. open in new tab
  26. M.M. Billah, M.M.H. Rocky, I. Hossen, I. Hossain, M.N. Hossain, S. Akhtar, Densities, viscosities, and refractive indices for the binary mixtures of tri-n-butyl phosphate (TBP) with toluene and ethylbenzene between (303.15 and 323.15) K, J. Mol. Liq. 265 (2018) 611-620, https://doi.org/10.1016/J.MOLLIQ.2018.05.126. open in new tab
  27. R. Zarrougui, M. Dhahbi, D. Lemordant, Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N- butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate, J. Solut. Chem. 39 (2010) 921-942, https://doi.org/10.1007/s10953- 010-9562-5. open in new tab
  28. H. Tokuda, K. Ishii, M.A.B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, Physico- chemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B 110 (2006) 2833-2839, https://doi.org/10. 1021/jp053396f. open in new tab
  29. R.G. Seoane, S. Corderí, E. Gómez, N. Calvar, E.J. González, E.A. MacEdo, Á. Domínguez, Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids, Ind. Eng. Chem. Res. 51 (2012) 2492-2504, https://doi.org/10.1021/ie2029255. open in new tab
  30. M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi, M. Irandoust, Physical and electrochemical properties of ionic liquids 1-ethyl-3- methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide, J. Mol. Liq. 157 (2010) 43-50, https://doi.org/ 10.1016/J.MOLLIQ.2010.08.005. open in new tab
  31. K. Řehák, P. Morávek, M. Strejc, Determination of mutual solubilities of ionic liquids and water, Fluid Phase Equilib. 316 (2012) 17-25, https://doi.org/10.1016/J.FLUID. 2011.12.008. open in new tab
  32. A. Luís, K. Shimizu, J.M.M. Araújo, P.J. Carvalho, J.A. Lopes-da-Silva, J.N. Canongia Lopes, L.P.N. Rebelo, J.A.P. Coutinho, M.G. Freire, A.B. Pereiro, Influence of nanosegregation on the surface tension of fluorinated ionic liquids, Langmuir 32 (2016) 6130-6139, https://doi.org/10.1021/acs.langmuir.6b00209. open in new tab
  33. J. Salminen, N. Papaiconomou, R.A. Kumar, J.-M. Lee, J. Kerr, J. Newman, J.M. Prausnitz, Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Phase Equilib. 261 (2007) 421-426, https:// doi.org/10.1016/J.FLUID.2007.06.031. open in new tab
  34. S. Monaco, A.M. Arangio, F. Soavi, M. Mastragostino, E. Paillard, S. Passerini, An elec- trochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries, Electrochim. Acta 83 (2012) 94-104, https://doi.org/10. 1016/J.ELECTACTA.2012.08.001. open in new tab
  35. U. Domańska, K. Paduszyński, M. Królikowski, A. Wróblewska, Separation of 2- phenylethanol from water by liquid-liquid extraction with ionic liquids: new experimental data and modeling with modern thermodynamic tools, Ind. Eng. Chem. Res. 55 (2016) 5736-5747, https://doi.org/10.1021/acs.iecr. 6b00375. open in new tab
  36. G. Annat, M. Forsyth, D.R. Macfarlane, Ionic liquid mixtures -variations in physical properties and their origins in molecular structure, J. Phys. Chem. A 116 (2012) 8251-8258, https://doi.org/10.1021/jp3012602. open in new tab
  37. S. Nebig, V. Liebert, J. Gmehling, Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund), Fluid Phase Equilib. 277 (2009) 61-67, https:// doi.org/10.1016/J.FLUID.2008.11.013. open in new tab
  38. H. Jin, B.O. Hare, J. Dong, S. Arzhantsev, G.A. Baker, J.F. Wishart, A.J. Benesi, M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3- methylimidazolium cation with various anions and the bis (trifluoromethylsulfonyl) imide anion with various cations, J. Phys. Chem. B 112 (2008) 81-92, https://doi.org/10.1021/jp076462h. open in new tab
  39. F.S. Oliveira, M.G. Freire, P.J. Carvalho, J.A.P. Coutinho, J.N.C. Lopes, L.P.N. Rebelo, I.M. Marrucho, Structural and positional isomerism influence in the physical properties of pyridinium NTf2-based ionic liquids: pure and water- saturated mixtures, J. Chem. Eng. Data 55 (2010) 4514-4520, https://doi.org/ 10.1021/je100377k. open in new tab
  40. Q. Liu, M. Yang, P. Yan, X. Liu, Z. Tan, U. Welz-Biermann, Density and surface tension of ionic liquids [C n py][NTf 2 ] (n = 2, 4, 5), J. Chem. Eng. Data 55 (2010) 4928-4930. open in new tab
  41. Q. Liu, P.F. Yan, M. Yang, Z.C. Tan, C.P. Li, U. Welz-Biermann, Dynamic viscosity and conductivity of ionic liquids [Cnpy][NTf2] (n = 2, 4, 5), Wuli Huaxue Xuebao/Acta Phys. -Chim. Sin. 27 (2011) 2762-2766, https://doi.org/10.3866/PKU. WHXB20112762. open in new tab
  42. M. Larriba, S. García, P. Navarro, J. García, F. Rodríguez, Physical properties of N- butylpyridinium tetrafluoroborate and N-butylpyridinium bis (trifluoromethylsulfonyl)imide binary ionic liquid mixtures, J. Chem. Eng. Data 57 (2012) 1318-1325, https://doi.org/10.1021/je300093r. open in new tab
  43. E.J. González, P.F. Requejo, Á. Domínguez, E.A. Macedo, Phase equilibria of binary mixtures (ionic liquid + aromatic hydrocarbon): effect of the structure of the com- ponents on the solubility, Fluid Phase Equilib. 360 (2013) 416-422, https://doi.org/ 10.1016/J.FLUID.2013.09.044. open in new tab
  44. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345-348. open in new tab
  45. E.J. González, P.F. Requejo, F.M. Maia, Á. Domínguez, E.A. Macedo, Solubility, density and excess molar volume of binary mixtures of aromatic compounds and common ionic liquids at T = 283.15 K and atmospheric pressure, Phys. Chem. Liq. 53 (2015) 419-428. open in new tab
  46. B. Goddu, M.M. Tadavarthi, V.K. Tadekoru, J.N. Guntupalli, Density, speed of sound, and dynamic viscosity of 1-butyl-3-methylimidazolium open in new tab
  47. MPa, J. Chem. Eng. Data 64 (2019) 2303-2319, https://doi.org/10. 1021/acs.jced.8b01095. open in new tab
  48. E.J. González, P.F. Requejo, Á. Domínguez, E.A. MacEdo, Physical properties of binary alcohol + ionic liquid mixtures at several temperatures and atmospheric pressure, J. Solut. Chem. 42 (2013) 746-763, https://doi.org/10.1007/s10953-013-9990-0. open in new tab
  49. M. Vraneš, S. Papović, A. Tot, N. Zec, S. Gadžurić, Density, excess properties, electrical conductivity and viscosity of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide + γ-butyrolactone binary mixtures, J. Chem. Thermodyn. 76 (2014) 161-171, https://doi.org/10.1016/J.JCT.2014.03.025. open in new tab
  50. Y. Li, H. Ye, P. Zeng, F. Qi, Volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with aniline, J. Solut. Chem. 39 (2010) 219-230, https://doi.org/10.1007/s10953-009-9494-0. open in new tab
  51. M.A. Iglesias-Otero, J. Troncoso, E. Carballo, L. Romaní, Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predic- tions, J. Chem. Thermodyn. 40 (2008) 949-956, https://doi.org/10.1016/j.jct. 2008.01.023. open in new tab
  52. P. Brocos, Á. Piñeiro, R. Bravo, A. Amigo, Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations, Phys. Chem. Chem. Phys. 5 (2003) 550-557, https://doi.org/10.1039/b208765k. open in new tab
  53. J.Y. Wu, Y.P. Chen, C.S. Su, Density and viscosity of ionic liquid binary mixtures of 1- n-butyl-3-methylimidazolium tetrafluoroborate with acetonitrile, N,N- dimethylacetamide, methanol, and N-methyl-2-pyrrolidone, J. Solut. Chem. 44 (2015) 395-412, https://doi.org/10.1007/s10953-014-0273-1. open in new tab
  54. W. Qian, Y. Xu, H. Zhu, C. Yu, Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols, J. Chem. Thermodyn. 49 (2012) 87-94, https://doi.org/10.1016/J.JCT.2012.01.013. open in new tab
  55. X. Li, Q. Zhou, X. Lu, S. Zhang, Densities and viscosities of binary mixtures of mag- netic ionic liquids 1-alkyl-3-methylimidazolium tetrachloroferrate with ethyl ace- tate at temperatures (293.15 to 323.15) K, J. Mol. Liq. 243 (2017) 285-292, https://doi.org/10.1016/J.MOLLIQ.2017.08.014. open in new tab
  56. F. Nabi, M.A. Malik, C.G. Jesudason, S.A. Al-Thabaiti, A review of molecular interac- tions in organic binary mixtures, Korean J. Chem. Eng. 31 (2014) 1505-1517, https://doi.org/10.1007/s11814-014-0173-5. open in new tab
  57. T. Inoue, T. Misono, Cloud point phenomena for POE-type nonionic surfactants in imidazolium-based ionic liquids: effect of anion species of ionic liquids on the cloud point, J. Colloid Interface Sci. 337 (2009) 247-253, https://doi.org/10.1016/J. JCIS.2009.05.002. open in new tab
  58. B. Garcia, R. Alcalde, J.M. Leal, J.S. Matos, Shear viscosities of the N- methylformamide-and N,N-dimethylformamide-(C1-C10) alkan-1-ol solvent sys- tems, J. Chem. Soc. Faraday Trans. 93 (1997) 1115-1118, https://doi.org/10.1039/ a607876a. open in new tab
  59. S. Nebig, J. Gmehling, Prediction of phase equilibria and excess properties for sys- tems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids, Fluid Phase Equilib. 302 (2011) 220-225. open in new tab
Verified by:
Gdańsk University of Technology

seen 150 times

Recommended for you

Meta Tags