Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide - Publikacja - MOST Wiedzy

Wyszukiwarka

Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide

Abstrakt

Densities, refractive indices and viscosities at 293.15, 298.15, 303.15, 308.15 and 313.15 K of binary mixtures of toluene with 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide have been measured over the miscible region at p = 0.1 MPa. From the experimental data, values of excess molar volume, excess thermal expansion, deviation in refractive index, deviation in viscosity and excess Gibbs energy of activation for viscous flow have been calculated. These properties have been fitted to the Redlich-Kister-type polynomial equation in order to analyse non-ideal behaviour of the studied mixtures. Moreover, partial and apparent molar volumes of toluene and ionic liquid in their binary systems have been calculated. Finally, the effects of temperature and cation of ionic liquid on the physicochemical properties were analysed and discussed in terms of intermolecular interactions occurring in the studied systems.

Cytowania

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 37 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
JOURNAL OF MOLECULAR LIQUIDS nr 304, strony 1 - 13,
ISSN: 0167-7322
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Warmińska D., Cichowska-Kopczyńska I.: Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide// JOURNAL OF MOLECULAR LIQUIDS -Vol. 304, (2020), s.1-13
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.molliq.2020.112754
Bibliografia: test
  1. S. Corderí, N. Calvar, E. Gómez, A. Domínguez, Capacity of ionic liquids [EMim][NTf 2] and [EMpy][NTf 2] for extraction of toluene from mixtures with alkanes: compar- ative study of the effect of the cation, Fluid Phase Equilib. 315 (2012) 46-52, https:// doi.org/10.1016/j.fluid.2011.11.016. otwiera się w nowej karcie
  2. T.A. Al-Sahhaf, E. Kapetanovic, Measurement and prediction of phase equilibria in the extraction of aromatics from naphtha reformate by tetraethylene glycol, Fluid Phase Equilib. 118 (1996) 271-285, https://doi.org/10.1016/0378-3812(95)02849- 8. otwiera się w nowej karcie
  3. J. Chen, L.-P. Duan, J.-G. Mi, W.-Y. Fei, Z.-C. Li, Liquid-liquid equilibria of multi- component systems including n-hexane, n-octane, benzene, toluene, xylene and sulfolane at 298.15 K and atmospheric pressure, Fluid Phase Equilib. 173 (2000) 109-119, https://doi.org/10.1016/S0378-3812(00)00398-8. otwiera się w nowej karcie
  4. U. Domańska, M. Wlazło, Z. Dąbrowski, A. Wiśniewska, Ammonium ionic liquids in separation of water/butan-1-ol using liquid-liquid equilibrium diagrams in ternary systems, Fluid Phase Equilib. 485 (2019) 23-31, https://doi.org/10.1016/J.FLUID. 2018.12.009. otwiera się w nowej karcie
  5. M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484-499, https://doi.org/10.1016/j.jhazmat. 2016.09.040. otwiera się w nowej karcie
  6. E.J. González, N. Calvar, B. González, Á. Domínguez, Separation of toluene from al- kanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at T = 298.15 K and atmospheric pressure, J. Chem. Thermodyn. 42 (2010) 752-757, https://doi. org/10.1016/J.JCT.2010.01.008. otwiera się w nowej karcie
  7. N. Delgado-Mellado, A. Ovejero-Perez, P. Navarro, M. Larriba, M. Ayuso, J. García, F. Rodríguez, Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cy- clohexene separation by liquid-liquid extraction, J. Chem. Thermodyn. 131 (2019) 340-346, https://doi.org/10.1016/J.JCT.2018.11.018. otwiera się w nowej karcie
  8. I. Cichowska-Kopczynska, M. Joskowska, R. Aranowski, Wetting processes in sup- ported ionic liquid membranes technology, Physicochem. Probl. Miner. Process. 50 (2014) https://doi.org/10.5277/ppmp140131. otwiera się w nowej karcie
  9. I. Cichowska-Kopczyńska, M. Joskowska, B. Debski, R. Aranowski, J. Hupka, Separa- tion of toluene from gas phase using supported imidazolium ionic liquid membrane, J. Membr. Sci. 566 (2018) 367-373, https://doi.org/10.1016/J.MEMSCI.2018.08.058. otwiera się w nowej karcie
  10. Q. Gan, D. Rooney, Y. Zou, Supported ionic liquid membranes in nanopore structure for gas separation and transport studies, Desalination 199 (2006) 535-537. otwiera się w nowej karcie
  11. S. Corderí, E. Gómez, Á. Domínguez, N. Calvar, (Liquid + liquid) equilibrium of ter- nary and quaternary systems containing heptane, cyclohexane, toluene and the ionic liquid [EMim][N(CN)2]. Experimental data and correlation, J. Chem. Thermodyn. 94 (2016) 16-23, https://doi.org/10.1016/J.JCT.2015.10.018. otwiera się w nowej karcie
  12. S. Corderí, N. Calvar, E. Gómez, Á. Domínguez, Quaternary (liquid + liquid) equilib- rium data for the extraction of toluene from alkanes using the ionic liquid [EMim] otwiera się w nowej karcie
  13. , J. Chem. Thermodyn. 76 (2014) 79-86, https://doi.org/10.1016/J.JCT.2014. 03.008. otwiera się w nowej karcie
  14. S. García, M. Larriba, J. García, J.S. Torrecilla, F. Rodríguez, Alkylsulfate-based ionic liquids in the liquid-liquid extraction of aromatic hydrocarbons, J. Chem. Thermodyn. 45 (2012) 68-74, https://doi.org/10.1016/J.JCT.2011.09.009. otwiera się w nowej karcie
  15. M. Larriba, P. Navarro, J. García, F. Rodríguez, Liquid-liquid extraction of toluene from n-heptane by {[emim][TCM] + [emim][DCA]} binary ionic liquid mixtures, Fluid Phase Equilib. 364 (2014) 48-54, https://doi.org/10.1016/J.FLUID.2013.12.008. otwiera się w nowej karcie
  16. S. García, M. Larriba, J. García, J.S. Torrecilla, F. Rodríguez, Liquid-liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluorobo- rate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids, Chem. Eng. J. 180 (2012) 210-215, https://doi.org/10.1016/J.CEJ.2011.11.069. otwiera się w nowej karcie
  17. M. Larriba, P. Navarro, J. García, F. Rodríguez, Separation of toluene from n-heptane, 2,3-dimethylpentane, and cyclohexane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids as extraction solvents, Sep. Purif. Technol. 120 (2013) 392-401, https://doi.org/10.1016/J.SEPPUR.2013.10.017. otwiera się w nowej karcie
  18. S. Corderí, N. Calvar, E. Gómez, Á. Domínguez, Quaternary (liquid + liquid) equilib- rium data for the extraction of toluene from alkanes using the ionic liquid [EMim] [MSO4], J. Chem. Thermodyn. 76 (2014) 79-86, https://doi.org/10.1016/J.JCT.2014. 03.008. otwiera się w nowej karcie
  19. M. Enayati, B. Mokhtarani, A. Sharifi, S. Anvari, M. Mirzaei, Liquid-liquid extraction of toluene from alkane with pyridinium based ionic liquid ([BPy][NO3] and [HPy] [NO3]) at 298.15 K and atmospheric pressure, J. Chem. Thermodyn. 102 (2016) 316-321, https://doi.org/10.1016/J.JCT.2016.07.030. otwiera się w nowej karcie
  20. M. Geppert-Rybczyńska, J.K. Lehmann, A. Heintz, Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary mixtures of 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sul- fonyl]imide with methanol or acetonitrile, J. Chem. Thermodyn. 71 (2014) 171-181, https://doi.org/10.1016/J.JCT.2013.12.009. otwiera się w nowej karcie
  21. M. Vranes, S. Dozic, V. Djeric, S. Gadzuric, Physicochemical characterization of 1- butyl-3-methylimidazolium and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide, J. Chem. Eng. Data 57 (2012) 1072-1077, https:// doi.org/10.1021/je2010837. otwiera się w nowej karcie
  22. P.F. Requejo, I. Díaz, E.J. González, Á. Domínguez, Mutual solubility of aromatic hy- drocarbons in pyrrolidinium and ammonium-based ionic liquids and its modeling using the cubic-plus-association (CPA) equation of state, J. Chem. Eng. Data 62 (2017) 633-642, https://doi.org/10.1021/acs.jced.6b00655. otwiera się w nowej karcie
  23. J. Vuksanović, D. Soldatović, I. Radović, Z. Višak, M. Kijevčanin, Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m-and p-xylenes, J. Chem. Thermodyn. 131 (2019) 393-403, https://doi. org/10.1016/J.JCT.2018.11.020. otwiera się w nowej karcie
  24. D. Keshapolla, S.P. Ijardar, R.L. Gardas, Temperature dependent apparent molar properties of trihexylammonium carboxylate based protic ionic liquids in toluene and dodecane, J. Mol. Liq. 272 (2018) 1058-1069, https://doi.org/10.1016/J. MOLLIQ.2018.10.114. otwiera się w nowej karcie
  25. A. Kumari, V. Aniya, N.V. Rane, P.K. Thella, B. Satyavathi, Isobaric phase equilibrium of morpholine + 1-decanol, volumetric properties and molar refractivity from 293.15 to 333.15 K of morpholine + 1-decanol and 1-octanol + toluene system with applications of Prigogine-Flory-Patterson theory, Thermochim. Acta 649 (2017) 41-53, https://doi.org/10.1016/J.TCA.2016.12.010. otwiera się w nowej karcie
  26. M.M. Billah, M.M.H. Rocky, I. Hossen, I. Hossain, M.N. Hossain, S. Akhtar, Densities, viscosities, and refractive indices for the binary mixtures of tri-n-butyl phosphate (TBP) with toluene and ethylbenzene between (303.15 and 323.15) K, J. Mol. Liq. 265 (2018) 611-620, https://doi.org/10.1016/J.MOLLIQ.2018.05.126. otwiera się w nowej karcie
  27. R. Zarrougui, M. Dhahbi, D. Lemordant, Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N- butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate, J. Solut. Chem. 39 (2010) 921-942, https://doi.org/10.1007/s10953- 010-9562-5. otwiera się w nowej karcie
  28. H. Tokuda, K. Ishii, M.A.B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, Physico- chemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B 110 (2006) 2833-2839, https://doi.org/10. 1021/jp053396f. otwiera się w nowej karcie
  29. R.G. Seoane, S. Corderí, E. Gómez, N. Calvar, E.J. González, E.A. MacEdo, Á. Domínguez, Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids, Ind. Eng. Chem. Res. 51 (2012) 2492-2504, https://doi.org/10.1021/ie2029255. otwiera się w nowej karcie
  30. M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi, M. Irandoust, Physical and electrochemical properties of ionic liquids 1-ethyl-3- methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide, J. Mol. Liq. 157 (2010) 43-50, https://doi.org/ 10.1016/J.MOLLIQ.2010.08.005. otwiera się w nowej karcie
  31. K. Řehák, P. Morávek, M. Strejc, Determination of mutual solubilities of ionic liquids and water, Fluid Phase Equilib. 316 (2012) 17-25, https://doi.org/10.1016/J.FLUID. 2011.12.008. otwiera się w nowej karcie
  32. A. Luís, K. Shimizu, J.M.M. Araújo, P.J. Carvalho, J.A. Lopes-da-Silva, J.N. Canongia Lopes, L.P.N. Rebelo, J.A.P. Coutinho, M.G. Freire, A.B. Pereiro, Influence of nanosegregation on the surface tension of fluorinated ionic liquids, Langmuir 32 (2016) 6130-6139, https://doi.org/10.1021/acs.langmuir.6b00209. otwiera się w nowej karcie
  33. J. Salminen, N. Papaiconomou, R.A. Kumar, J.-M. Lee, J. Kerr, J. Newman, J.M. Prausnitz, Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Phase Equilib. 261 (2007) 421-426, https:// doi.org/10.1016/J.FLUID.2007.06.031. otwiera się w nowej karcie
  34. S. Monaco, A.M. Arangio, F. Soavi, M. Mastragostino, E. Paillard, S. Passerini, An elec- trochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries, Electrochim. Acta 83 (2012) 94-104, https://doi.org/10. 1016/J.ELECTACTA.2012.08.001. otwiera się w nowej karcie
  35. U. Domańska, K. Paduszyński, M. Królikowski, A. Wróblewska, Separation of 2- phenylethanol from water by liquid-liquid extraction with ionic liquids: new experimental data and modeling with modern thermodynamic tools, Ind. Eng. Chem. Res. 55 (2016) 5736-5747, https://doi.org/10.1021/acs.iecr. 6b00375. otwiera się w nowej karcie
  36. G. Annat, M. Forsyth, D.R. Macfarlane, Ionic liquid mixtures -variations in physical properties and their origins in molecular structure, J. Phys. Chem. A 116 (2012) 8251-8258, https://doi.org/10.1021/jp3012602. otwiera się w nowej karcie
  37. S. Nebig, V. Liebert, J. Gmehling, Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund), Fluid Phase Equilib. 277 (2009) 61-67, https:// doi.org/10.1016/J.FLUID.2008.11.013. otwiera się w nowej karcie
  38. H. Jin, B.O. Hare, J. Dong, S. Arzhantsev, G.A. Baker, J.F. Wishart, A.J. Benesi, M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3- methylimidazolium cation with various anions and the bis (trifluoromethylsulfonyl) imide anion with various cations, J. Phys. Chem. B 112 (2008) 81-92, https://doi.org/10.1021/jp076462h. otwiera się w nowej karcie
  39. F.S. Oliveira, M.G. Freire, P.J. Carvalho, J.A.P. Coutinho, J.N.C. Lopes, L.P.N. Rebelo, I.M. Marrucho, Structural and positional isomerism influence in the physical properties of pyridinium NTf2-based ionic liquids: pure and water- saturated mixtures, J. Chem. Eng. Data 55 (2010) 4514-4520, https://doi.org/ 10.1021/je100377k. otwiera się w nowej karcie
  40. Q. Liu, M. Yang, P. Yan, X. Liu, Z. Tan, U. Welz-Biermann, Density and surface tension of ionic liquids [C n py][NTf 2 ] (n = 2, 4, 5), J. Chem. Eng. Data 55 (2010) 4928-4930. otwiera się w nowej karcie
  41. Q. Liu, P.F. Yan, M. Yang, Z.C. Tan, C.P. Li, U. Welz-Biermann, Dynamic viscosity and conductivity of ionic liquids [Cnpy][NTf2] (n = 2, 4, 5), Wuli Huaxue Xuebao/Acta Phys. -Chim. Sin. 27 (2011) 2762-2766, https://doi.org/10.3866/PKU. WHXB20112762. otwiera się w nowej karcie
  42. M. Larriba, S. García, P. Navarro, J. García, F. Rodríguez, Physical properties of N- butylpyridinium tetrafluoroborate and N-butylpyridinium bis (trifluoromethylsulfonyl)imide binary ionic liquid mixtures, J. Chem. Eng. Data 57 (2012) 1318-1325, https://doi.org/10.1021/je300093r. otwiera się w nowej karcie
  43. E.J. González, P.F. Requejo, Á. Domínguez, E.A. Macedo, Phase equilibria of binary mixtures (ionic liquid + aromatic hydrocarbon): effect of the structure of the com- ponents on the solubility, Fluid Phase Equilib. 360 (2013) 416-422, https://doi.org/ 10.1016/J.FLUID.2013.09.044. otwiera się w nowej karcie
  44. O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem. 40 (1948) 345-348. otwiera się w nowej karcie
  45. E.J. González, P.F. Requejo, F.M. Maia, Á. Domínguez, E.A. Macedo, Solubility, density and excess molar volume of binary mixtures of aromatic compounds and common ionic liquids at T = 283.15 K and atmospheric pressure, Phys. Chem. Liq. 53 (2015) 419-428. otwiera się w nowej karcie
  46. B. Goddu, M.M. Tadavarthi, V.K. Tadekoru, J.N. Guntupalli, Density, speed of sound, and dynamic viscosity of 1-butyl-3-methylimidazolium otwiera się w nowej karcie
  47. MPa, J. Chem. Eng. Data 64 (2019) 2303-2319, https://doi.org/10. 1021/acs.jced.8b01095. otwiera się w nowej karcie
  48. E.J. González, P.F. Requejo, Á. Domínguez, E.A. MacEdo, Physical properties of binary alcohol + ionic liquid mixtures at several temperatures and atmospheric pressure, J. Solut. Chem. 42 (2013) 746-763, https://doi.org/10.1007/s10953-013-9990-0. otwiera się w nowej karcie
  49. M. Vraneš, S. Papović, A. Tot, N. Zec, S. Gadžurić, Density, excess properties, electrical conductivity and viscosity of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide + γ-butyrolactone binary mixtures, J. Chem. Thermodyn. 76 (2014) 161-171, https://doi.org/10.1016/J.JCT.2014.03.025. otwiera się w nowej karcie
  50. Y. Li, H. Ye, P. Zeng, F. Qi, Volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with aniline, J. Solut. Chem. 39 (2010) 219-230, https://doi.org/10.1007/s10953-009-9494-0. otwiera się w nowej karcie
  51. M.A. Iglesias-Otero, J. Troncoso, E. Carballo, L. Romaní, Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predic- tions, J. Chem. Thermodyn. 40 (2008) 949-956, https://doi.org/10.1016/j.jct. 2008.01.023. otwiera się w nowej karcie
  52. P. Brocos, Á. Piñeiro, R. Bravo, A. Amigo, Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations, Phys. Chem. Chem. Phys. 5 (2003) 550-557, https://doi.org/10.1039/b208765k. otwiera się w nowej karcie
  53. J.Y. Wu, Y.P. Chen, C.S. Su, Density and viscosity of ionic liquid binary mixtures of 1- n-butyl-3-methylimidazolium tetrafluoroborate with acetonitrile, N,N- dimethylacetamide, methanol, and N-methyl-2-pyrrolidone, J. Solut. Chem. 44 (2015) 395-412, https://doi.org/10.1007/s10953-014-0273-1. otwiera się w nowej karcie
  54. W. Qian, Y. Xu, H. Zhu, C. Yu, Properties of pure 1-methylimidazolium acetate ionic liquid and its binary mixtures with alcohols, J. Chem. Thermodyn. 49 (2012) 87-94, https://doi.org/10.1016/J.JCT.2012.01.013. otwiera się w nowej karcie
  55. X. Li, Q. Zhou, X. Lu, S. Zhang, Densities and viscosities of binary mixtures of mag- netic ionic liquids 1-alkyl-3-methylimidazolium tetrachloroferrate with ethyl ace- tate at temperatures (293.15 to 323.15) K, J. Mol. Liq. 243 (2017) 285-292, https://doi.org/10.1016/J.MOLLIQ.2017.08.014. otwiera się w nowej karcie
  56. F. Nabi, M.A. Malik, C.G. Jesudason, S.A. Al-Thabaiti, A review of molecular interac- tions in organic binary mixtures, Korean J. Chem. Eng. 31 (2014) 1505-1517, https://doi.org/10.1007/s11814-014-0173-5. otwiera się w nowej karcie
  57. T. Inoue, T. Misono, Cloud point phenomena for POE-type nonionic surfactants in imidazolium-based ionic liquids: effect of anion species of ionic liquids on the cloud point, J. Colloid Interface Sci. 337 (2009) 247-253, https://doi.org/10.1016/J. JCIS.2009.05.002. otwiera się w nowej karcie
  58. B. Garcia, R. Alcalde, J.M. Leal, J.S. Matos, Shear viscosities of the N- methylformamide-and N,N-dimethylformamide-(C1-C10) alkan-1-ol solvent sys- tems, J. Chem. Soc. Faraday Trans. 93 (1997) 1115-1118, https://doi.org/10.1039/ a607876a. otwiera się w nowej karcie
  59. S. Nebig, J. Gmehling, Prediction of phase equilibria and excess properties for sys- tems with ionic liquids using modified UNIFAC: typical results and present status of the modified UNIFAC matrix for ionic liquids, Fluid Phase Equilib. 302 (2011) 220-225. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 64 razy

Publikacje, które mogą cię zainteresować

Meta Tagi